Skip to main content
Log in

Cardiac Mitochondrial PTEN-L determines cell fate between apoptosis and survival during chronic alcohol consumption

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Chronic alcohol consumption induces myocardial damage and a type of non-ischemic cardiomyopathy termed alcoholic cardiomyopathy, where mitochondrial ultrastructural damages and suppressed fusion activity promote cardiomyocyte apoptosis. The aim of the present study is to determine the role of mitochondrial fission proteins and/or other proteins that localise on cardiac mitochondria for apoptosis upon ethanol consumption. In vivo and in vitro chronic alcohol exposure increased mitochondrial Drp1 levels but knockdown of the same did not confer cardioprotection in H9c2 cells. These cells displayed downregulated expression of MFN2 and OPA1 for Bak-mediated cytochrome c release and apoptosis. Dysregulated PTEN/AKT cell survival signal in both ethanol treated and Drp1 knockdown cells augmented oxidative stress by promoting  mitochondrial PTEN-L and MFN1 interaction. Inhibiting this interaction with VO–OHpic, a reversible PTEN inhibitor, prevented Bak insertion into the mitochondria and release of cytochrome c to cytoplasm. Thus, our study provides evidence that Drp1-mediated mitochondrial fission is dispensable for ethanol-induced cardiotoxicity and that stress signals induce mitochondrial PTEN-L accumulation for structural and functional dyshomeostasis. Our in vivo results also demonstrates the therapeutic potential of VO–OHpic for habitual alcoholics developing myocardial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fernandez-Sola J (2015) Cardiovascular risks and benefits of moderate and heavy alcohol consumption. Nat Rev Cardiol 12:576–587

    PubMed  Google Scholar 

  2. Hvidyfeldt UA et al (2010) Alcohol intake and risk of coronary heart disease in younger, middle-aged, and older adults. Circulation 121:1589–1597

    Google Scholar 

  3. Piano MR (2002) Alcohol and heart failure. J Card Fail 8:239–246

    CAS  PubMed  Google Scholar 

  4. Guzzo-Merello G, Cobo-Marcos M, Gallego-Delgado M, Garcia-Pavia P (2014) Alcoholic cardiomyopathy. World J Cardiol 6:771–781

    PubMed  PubMed Central  Google Scholar 

  5. Piano MR (2002) Alcoholic cardiomyopathy: incidence, clinical characteristics and pathophysiology. Chest 121:1638–1650

    PubMed  Google Scholar 

  6. Umoh NA, Walker RK, Al-Rubaiee M, Jeffress MA, Haddad GE (2014) Acutre alcohol modulates cardiac function as PI3K/Akt regulates oxidative stress. Alcohol Clin Exp Res 38:1847–1864

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ong SB et al (2015) Akt protects the heart against ischaemia-reperfusion injury by modulating mitochondrial morphology. Thromb Haemost 113:513–521

    PubMed  Google Scholar 

  8. Sudarikova YV, Bakeeva LE, Tsiplenkova VG (1997) Ultrastructure of mitochondrial reticulum of human cardiomyocytes in alcohol cardiomyopathy. Biochemistry (Mosc) 62:989–1002

    CAS  Google Scholar 

  9. Eisner V et al (2017) Mitochondrial fusion dynamics is robust in the heart and depends on calcium oscillations and contractile activity. Proc Natl Acad Sci USA 114:E859–E896

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sivakumar A, Subbiah R, Balakrishnan R, Rajendhran J (2017) Cardiac mitochondrial dynamics: miR-mediated regulation during cardiac injury. J Mol Cell Cardiol 110:26–34

    CAS  PubMed  Google Scholar 

  11. Song M, Mihara K, Chen Y, Scorrano L, Dorn GW 2nd (2015) Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab 21:273–286

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion and stress. Science 337:1062–1065

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ong SB, Kalkhoran SB, Cabrera-Fuetnes HA, Hausenloy DJ (2015) Mitochondrial fusion and fission proteins as novel therapeutic targets for treating cardiovascular disease. Eur J Pharmacol 763:104–114

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Smirnova E, Griparic L, Shurland DL, van der Bliek AM (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Smirnova E, Shurland DL, Ryazantsev SN, van der Bliek AM (1998) A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol 143:351–358

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yoon Y, Krueger EW, Oswald BJ, McNiven MA (2003) The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23:5409–5420

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ (2010) Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121:2012–2022

    CAS  PubMed  Google Scholar 

  18. Sharp WW et al (2014) Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia-reperfusion injury: therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. FASEB J 28:316–326

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pennanen C et al (2014) Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signalling pathway. J Cell Sci 127:2659–2671

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Din S et al (2013) Pim-1 preserves mitochondrial morphology by inhibiting dynamin-related protein 1 translocation. Proc Natl Acad Sci USA 110:5969–5974

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Watanabe T et al (2014) Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance. Exp Cell Res 323:314–325

    CAS  PubMed  Google Scholar 

  22. Disatnik MH et al (2013) Acute inhibition of excessive mitochondrial fission after myocardial infarction prevents long-term cardiac dysfunction. J Am Heart Assoc 2:e000461

    PubMed  PubMed Central  Google Scholar 

  23. Pushpakiran G, Mahalakshmi K, Anuradha CV (2004) Taurine restores ethanol-induced depletion of antioxidants and attenuates oxidative stress in rat tissues. Amino Acids 27:91–96

    CAS  PubMed  Google Scholar 

  24. Zu L, Shen Z, Wesley J, Cai ZP (2011) PTEN inhibitors cause a negative inotropic and chronotrophic effect in mice. Eur J Pharmacol 10:298–302

    Google Scholar 

  25. Ramasamy S, Velmurugan G, Rekha B, Anusha S, Rajan KS, Shanmugarajan S, Ramprasath T, Gopal P, Tomar D, Karthik KV, Verma SK, Garikipati VNS, Sudarsan R (2018) Egr-1 mediated cardiac miR-99 family expression diverges physiological hypertrophy from pathological hypertrophy. Exp Cell Res 365:46–56

    CAS  PubMed  Google Scholar 

  26. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  27. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    CAS  PubMed  Google Scholar 

  28. Ila R, Solem M (2006) Chronic alcohol exposure alters IGF1 signaling in H9c2 cells via changes in PKC delta. Alcohol 39:169–178

    CAS  PubMed  Google Scholar 

  29. Mak LH, Vilar R, Woscholski R (2010) Characterisation of the PTEN inhibitor VO-OHpic. J Chem Biol 3:157–163

    PubMed  PubMed Central  Google Scholar 

  30. Okada M, Morioka S, Kanazawa H, Yamawaki H (2016) Canstatin inhibits isoproterenol-induced apoptosis through preserving mitochondrial morphology in differentiated H9c2 cardiomyoblasts. Apoptosis 21:887–895

    CAS  PubMed  Google Scholar 

  31. Gostimskaya I, Galkin A (2010) Preparation of highly coupled rat heart mitochondria. J Vis Exp 43:2202

    Google Scholar 

  32. Frezza C, Cipolat S, Scorrano L (2007) Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc 2:287–295

    CAS  PubMed  Google Scholar 

  33. Rekha B et al (2018) Chronic intaking of 4-methyimidazole induces hyperinsulinemia and hypoglycaemia via pancreatic beta cell hyperplasia and glucose dyshomeostasis. Sci Rep 8:17037

    PubMed  PubMed Central  Google Scholar 

  34. Brandt N et al (2017) PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle. PLoS ONE 12:e0185993

    PubMed  PubMed Central  Google Scholar 

  35. Wu S, Zhou F, Zhang Z, Xing D (2011) Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins. FEBS J 278:941–954

    CAS  PubMed  Google Scholar 

  36. Mashimo K, Arthur PG, Ohno Y (2015) Ethanol dose- and time-dependently increases alpha and beta subunits of mitochondrial ATP Synthase of cultured neonatal rat cardiomyocytes. J Nippon Med Sch 82:237–245

    CAS  PubMed  Google Scholar 

  37. Marin-Garcia J, Ananthakrishnan R, Goldenthal MJ (1995) Heart mitochondria response to alcohol is different than brain and liver. Alcohol Clin Exp Res 19:1463–1466

    CAS  PubMed  Google Scholar 

  38. Ikeda Y, Shirakabe A, Brady C, Zablocki D, Ohishi MM, Sadoshima J (2015) Molecular mechanisms mediating mitochondrial dynamics and mitophagy and their functional roles in the cardiovascular system. J Mol Cell Cardiol 78:116–122

    CAS  PubMed  Google Scholar 

  39. Song Z, Chen H, Fiket M, Alexander C, Chan DC (2007) OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential and Yme1L. J Cell Biol 178:749–755

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou LL, Zhou LY, Luo KQ, Chang DC (2005) Smac/DIABLO and cytochrome c are released from mitochondria through a similar mechanism during UV-induced apoptosis. Apoptosis 10:289–299

    CAS  PubMed  Google Scholar 

  41. Legros F, Lombes A, Frachon P, Rojo M (2002) Mitochondrial fusion in human cells is efficient, requites the inner membrane potential and is mediated by the mitofusins. Mol Biol Cell 13:4343–4354

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Guo S, Yao Q, Ke Z, Chen H, Wu J, Liu C (2015) Resveratrol attenuates high glucose-induced oxidative stress and cardiomyocyte apoptosis through AMPK. Mol Cell Endocrinol 412:85–94

    CAS  PubMed  Google Scholar 

  43. Fang WJ, Wang CJ, He Y, Zhou YL, Peng XD, Liu SK (2018) Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation. Acta Pharmacol Sin 39:59–73

    CAS  PubMed  Google Scholar 

  44. Movahed A, Yu L, Thandapilly SJ, Louis XL, Netticadan T (2012) Resveratrol protects adult cardiomyocytes against oxidative stress mediated cell injury. Arch Biochem Biophys 527:74–80

    CAS  PubMed  Google Scholar 

  45. Biala A et al (2010) Resveratrol induces mitochondrial biogenesis and ameliorates Ang- II-induced cardiac remodelling in transgenic rats harbouring human renin and angiotensinogen genes. Blood Press 19:196–205

    CAS  PubMed  Google Scholar 

  46. Walker RK et al (2013) The good, the bad, and the ugly with alcohol use and abuse on the heart. Acohol Clin Exp Res 37:1253–1260

    CAS  Google Scholar 

  47. Sag CM, Santos CX, Shah AM (2014) Redox regulation of cardiac hypertrophy. J Mol Cell Cardiol 73:103–111

    CAS  PubMed  Google Scholar 

  48. Hopkins BD et al (2014) A secreted PTEN phosphatase that enters cells to alter signalling and survival. Science 341:399–402

    Google Scholar 

  49. Vela L, Gonzalo O, Naval J, Marzo I (2013) Direct interaction of Bax and Bak proteins with Bcl-2 homology domain 3 (BH3)-only proteins in living cells revealed by fluorescence complementation. J Biol Chem 288:4935–4946

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Estaquier J, Arnoult D (2007) Inhibiting Drp1-mediated mitochondrial fission selectively prevents the releaseo f cytochrome c during apoptosis. Cell Death Differ 14:1086–1094

    CAS  PubMed  Google Scholar 

  51. Parone PA et al (2006) Inhibiting the mitochondrial fission machinery does not prevent Bax/Bak-dependent apoptosis. Mol Cell Biol 26:7397–7408

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Madesh M et al (2009) Execution of superoxide-induced cell death by the proapoptotic Bcl-2 related proteins Bid and Bak. Mol Cell Biol 29:3099–3112

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Brooks C et al (2007) Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins. Proc Natl Acad Sci USA 104:11649–11654

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hescheler J, Meyer R, Plant S, Krautwurst D, Rosenthal W, Schultz G (1991) Morphological, biochemical, and electrophysiological characterisation of a clone cell (H9c2) line from rat heart. Circ Res 69:1476–1486

    CAS  PubMed  Google Scholar 

  55. Zhao J et al (2011) Human MIEF1 recruits Drp1 to mitochondrial outer membranes and promotes mitochondrial fusion rather than fission. EMBO J 30:2762–2778

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jiang X, Jiang H, Shen Z, Wang X (2014) Activation of mitochondrial protease OMA1 by Bax and Bak promotes cytochrome c release during apoptosis. Proc Natl Acad Sci USA 111:14782–14787

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Arnoult D, Grodet A, Lee YJ, Estaquier J, Blackstone C (2005) Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. J Biol Chem 280:35742–35750

    CAS  PubMed  Google Scholar 

  58. Griparie L, van der Wel NN, Orozco IJ, Peters PJ, van der Bliek AM (2004) Loss of intermembrane space protein Mgm1/OPA1 induces swelling and localised constrictions along the lengths of mitochondria. J Biol Chem 279:18792–18798

    Google Scholar 

  59. Tang S, Le PK, Tse S, Wallace DC, Huang T (2009) Heterozygous mutation of Opa1 in Drosophila shortens lifespan mediated through increased reactive oxygen species production. PLoS ONE 4:e4492

    PubMed  PubMed Central  Google Scholar 

  60. Olichon A et al (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278:7743–7746

    CAS  PubMed  Google Scholar 

  61. Chen L, Gong Q, Stice JP, Knowlton AA (2009) Mitochondrial OPA1, apoptosis and heart failure. Cardiovasc Res 84:91–99

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lu C et al (2015) Attenuation of cardiac dysfunction and remodelling of myocardial infarction by microRNA-130a is mediated by suppression of PTEN and activation of Pi3K dependent signalling. J Mol Cell Cardiol 89:87–97

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Yeon JE, Califano S, Xu J, Wands JR, De La Monte SM (2003) Potential role of PTEN phosphatase in ethanol-impaired survival signalling in the liver. Hepatology 38:703–714

    CAS  PubMed  Google Scholar 

  64. Xu J et al (2003) Ethanol impairs insulin-stimulated neuronal survival in the developing brain: Role of PTEN phosphatase. J Biol Chem 278:26929–26937

    CAS  PubMed  Google Scholar 

  65. Yao XH, Nyomba BL (2008) Hepatic insulin resistance induced by prenatal alcohol exposure is associated with the reduced PTEN and TRB3 acetylation in adult rat offspring. Am J Physiol Regul Integr Comp Physiol 294:R1797–1806

    CAS  PubMed  Google Scholar 

  66. He J, de la Monte S, Wands JR (2007) Acute ethanol exposure inhibits insulin signalling in the liver. Hepatology 46:1791–1800

    CAS  PubMed  Google Scholar 

  67. Wang L et al (2018) PTEN-L is a novel protein phosphatase for ubiquitin dephosphorylation to inhibit PINK1-Parkin-mediated mitophagy. Cell Res 28:787–802

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Science & Engineering Research Board (SERB), Government of India, supported this study [Grant Number: EMR/2014/000892]. The authors also acknowledge DBT, UGC-NRCBS, and –CAS, DST-PURSE, Government of India for instrumental support.

Author information

Authors and Affiliations

Authors

Contributions

RS, AS—concept, design of experiments; AS, SS—execution of experiments, AS, RB—in vivo experiments; AS—data analysis and manuscript writing; RS,AS,SS,RB-Manuscript corrections and review.

Corresponding author

Correspondence to Ramasamy Subbiah.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1. Chronic ethanol ingestion induces cardiac oxidative stress, in vivo. (A)

Animals consuming alcohol have increased serum CK-MB levels compared to control. (B) Chronic alcohol exposure increased myocardial lipid peroxidation. (C) Alcohol consumption did not alter total antioxidant levels between control and treated. Data are represented as mean ± SEM where ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05, ns not significant versus the control group. Supplementary Fig. 2. Silencing of Drp1 augmented ethanol induced oxidative stress, in vitro. (A) Ethanol treatment increased lipid peroxidation in Drp1 silenced cells. (B) Total antioxidant levels decreased on ethanol treatment to Drp1 depleted cells. (C) Pre-treatment with z-vad ameliorated Drp1 silencing-induced loss in cell viability upon ethanol exposure. Data are represented as mean ± SEM where ***P < 0.001, **P < 0.01, *P < 0.05, ns not significant versus the respective control group, $$P < 0.01, $ < 0.05 versus scramble control and ### P < 0.001, ##P < 0.01, #P < 0.05, ns- not significant versus ethanol treated group. Supplementary Fig. 3. Ethanol-induced mitochondrial dysfunction in Drp1 silenced H9c2 cells is abrogated with Resveratrol pre-treatment. Mitochondrial superoxide levels are reduced on RES pre-treatment in Drp1 depleted cells exposed to ethanol. Supplementary Fig. 4. Pre-treatment with VO-OHpic improves cell survival response to ethanol-induced cytotoxicity in Drp1 depleted cells. (A) VO increased p-Akt1 levels at 20 min and normalised to control at 24 h and 48 h. (B) Quantitative representation of increase in p-Akt1 levels compared to control at 20 min. (C) VO pre-treatment improved ATP production in Drp1 depleted cells. (D) & (E) VO significantly reduced mitochondrial superoxide levels upon ethanol exposure. (F) Lipid peroxidation was significantly reduced upon VO pre-treatment in Drp1 depleted cells. Data are represented as mean ± SEM where ***P < 0.001, **P < 0.01, *P < 0.05, ns not significant versus the respective control group, $$$P < 0.001, $$P < 0.01, $P < 0.05 versus scramble control and ###P < 0.001, ##P < 0.01, #P < 0.05, ns not significant versus scramble siRNA transfected and ethanol treated group. Supplementary Fig. 5. Mdivi-1 increases oxidative stress upon ethanol exposure. (A) Pre-treatment with Mdivi-1 does not improve cell viability on ethanol exposure. (B) Mdivi-1 does not reduce ethanol-induced lipid peroxidation of H9c2 cells. (C) Mdivi-1 supresses antioxidant levels in ethanol treated cells. (D) Ethanol treatment of Mdivi-1 pre-treated cells reduced ATP producing capacity of the cells. Data are represented as mean ± SEM where ***P < 0.001, **P < 0.01, *P < 0.05, ns not significant versus the respective control group, ###P < 0.001, ##P < 0.01, #P < 0.05, ns not significant versus Mdivi1 + ethanol treated group. Supplementary Fig. 6. VO pre-treatment reduced alcohol-induced cardiac oxidative stress. (A) Ethanol exposure did not alter cardiac total antioxidant levels during VO pre-treatment. (B) VO treatment prevented lipid peroxidation of heart tissue on ethanol exposure. Data are represented as mean ± SEM (n = 6) where **P < 0.01, *P < 0.05, ns not significant versus the control group and ##P < 0.01 versus EtOH treated animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, A., Shanmugarajan, S., Subbiah, R. et al. Cardiac Mitochondrial PTEN-L determines cell fate between apoptosis and survival during chronic alcohol consumption. Apoptosis 25, 590–604 (2020). https://doi.org/10.1007/s10495-020-01616-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-020-01616-2

Keywords

Navigation