Skip to main content
Log in

Different approaches in metabolomic analysis of plants exposed to selenium: a comprehensive review

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Numerous benefits related with adequate selenium supply are well-documented in all life domains; the most prominent comprise Se participation in antioxidant defense, chemopreventive activity, and alleviation of heavy metal stress. For higher plants both, favorable and toxic effects were reported, depending on the biological species, total Se concentration and on the variety/distribution of its physicochemical forms. Extensive studies focusing Se pathways and Se impact in plants have been carried out, providing data of high relevance for human health and nutrition as well as in the areas of agriculture, biotechnology, and phytoremediation. The influence of Se has been observed in all “omics” components; among them, metabolomics seems particularly interesting because the products of plant metabolism directly reflect its actual state and closely denote molecular phenotype. It should be emphasized that plant metabolites derived from Se exposure are of interest in clinical applications, in the production of dietary supplements and functional foods. In this review, recent advances in metabolomics studies of Se in higher plants are presented, primarily focusing on analytical methodology and briefly summarizing biological relevance of the obtained results. In the first part, principal research frameworks related with Se-exposed plants are presented and metabolomic approaches used in these studies are introduced. Selenium uptake and biotransformation processes are briefed, emphasizing the complexity of biological pathways and large variety of Se metabolites; analytical speciation schemes are described and located within targeted or semi-targeted approaches. Next, metabolomic analysis of plants affected by Se exposure is addressed; specific attention is given to metabolites related with stress response, and to products of primary and secondary metabolism (amino acids, fatty acids, and their oxidation products, antioxidants, glucosinolates, phenolic compounds, etc.). Finally, few examples of untargeted metabolomics are presented, highlighting multifaceted Se impact in plants. At the end, short conclusions and future prospective are furnished.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aborode FA, Raab A, Foster S, Lombi E, Maher W, Krupp EM, Feldmann J (2015) Selenopeptides and elemental selenium in Thunbergia alata after exposure to selenite: quantification method for elemental selenium. Metallomics 7:1056–1066

    CAS  PubMed  Google Scholar 

  • Aureli F, Ouerdane L, Bierla K, Szpunar J, Prakash NT, Cubadda F (2012) Identification of selenosugars and other low-molecular weight selenium metabolites in high-selenium cereal crops. Metallomics 4:968–978

    CAS  PubMed  Google Scholar 

  • Avila WF, Yang Y, Faquin V, Ramos SJ, Guilherme LRG, Thannhauser TW, Li L (2014) Impact of selenium supply on Se-methylselenocysteine and glucosinolate accumulation in selenium-biofortified Brassica sprouts. Food Chem 165:578–586

    CAS  PubMed  Google Scholar 

  • Bachiega P, Salgado JM, de Carvalho JE, Ruiz ALT, Schwarz K, Tezotto T, Morzelle MC (2016) Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea Italica) biofortified with selenium. Food Chem 190:771–776

    CAS  PubMed  Google Scholar 

  • Bai X, Li Y, Liang X, Li H, Zhao J, Li YF, Gao Y (2019) Botanic metallomics of mercury and selenium: current understanding of mercury-selenium antagonism in plant with the traditional and advanced technology. Bull Environ Contam Toxicol 102:628–634

    CAS  PubMed  Google Scholar 

  • Balcaen L, Bolea-Fernandez E, Resano M, Vanhaecke F (2015) Inductively coupled plasma–tandem mass spectrometry (ICP-MS/MS): a powerful and universal tool for the interference-free determination of (ultra) trace elements–a tutorial review. Anal Chim Acta 894:7–19

    CAS  PubMed  Google Scholar 

  • Bañuelos GS, Arroyo I, Pickering IJ, Yang SI, Freeman JL (2015) Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem 166:603–608

    PubMed  Google Scholar 

  • Barickman TC, Kopsell DA, Sams CE (2013) Selenium influences glucosinolate and isothiocyanates and increases sulfur uptake in Arabidopsis thaliana and rapid-cycling Brassica oleracea. J Agric Food Chem 61:202–209

    CAS  PubMed  Google Scholar 

  • Beale DJ, Pinu FR, Kouremenos KA, Poojary MM, Narayana VK, Boughton BA, Dias DA (2018) Review of recent developments in GC–MS approaches to metabolomics-based research. Metabolomics 14:152

    PubMed  Google Scholar 

  • Bernat P, Gajewska E, Bernat T, Wielanek M (2014) Characterisation of the wheat phospholipid fraction in the presence of nickel and/or selenium. Plant Growth Regul 72:163–170

    CAS  Google Scholar 

  • Bischoff KL (2016) Glucosinolates. In: Gupta RC (ed) Nutraceuticals. Academic Press, Cambridge, pp 551–554

    Google Scholar 

  • Bodnar M, Szczyglowska M, Konieczka P, Namiesnik J (2016) Methods of selenium supplementation: bioavailability and determination of selenium compounds. Crit Rev Food Sci Nutr 56:36–55

    CAS  PubMed  Google Scholar 

  • Both EB, Shao S, Xiang J, Jókai Z, Yin H, Liu Y, Magyar A, Dernovics M (2018) Selenolanthionine is the major water-soluble selenium compound in the selenium tolerant plant Cardamine violifolia. Biochim Biophys Acta Gen Sub 1862:2354–2362

    CAS  Google Scholar 

  • Caldana C, Degenkolbe T, Cuadros-Inostroza A, Klie S, Sulpice R, Leisse A, Steinhauser D, Fernie AR, Willmitzer L, Hannah MA (2011) High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions. Plant J 67:869–884

    CAS  PubMed  Google Scholar 

  • Cao D, Liu Y, Ma L, Jin X, Guo G, Tan R, Liu Z, Zheng L, Ye F, Liu W (2018) Transcriptome analysis of differentially expressed genes involved in selenium accumulation in tea plant (Camellia sinensis). PLoS ONE 13:e0197506

    PubMed  PubMed Central  Google Scholar 

  • Carvalho SM, Vasconcelos MW (2013) Producing more with less: strategies and novel technologies for plant-based food biofortification. Food Res Int 54:961–971

    CAS  Google Scholar 

  • Chaleckis R, Meister I, Zhang P, Wheelock CE (2019) Challenges, progress and promises of metabolite annotation for LC–MS-based metabolomics. Curr Opin Biotechnol 55:44–50

    CAS  PubMed  Google Scholar 

  • Chan QL, Afton SE, Caruso JA (2010) Investigation of selenium metabolites in se-enriched kale, Brassica oleracea, via HPLC-ICPMS and nanoESI-ITMS. J Anal At Spectrom 25:186–192

    CAS  Google Scholar 

  • Chen Q, Lu X, Guo X, Guo Q, Li D (2017) Metabolomics characterization of two Apocynaceae plants, Catharanthus roseus and Vinca minor, using GC-MS and LC-MS methods in combination. Molecules 22:997

    PubMed Central  Google Scholar 

  • Chomchan R, Siripongvutikorn S, Puttarak P (2017) Selenium bio-fortification: an alternative to improve phytochemicals and bioactivities of plant foods. Funct Food Health Dis 7:263–279

    CAS  Google Scholar 

  • Cui L, Zhao J, Chen J, Zhang W, Gao Y, Li B, Li YF (2018) Translocation and transformation of selenium in hyperaccumulator plant Cardamine enshiensis from Enshi, Hubei, China. Plant Soil 425:577–588

    CAS  Google Scholar 

  • D’Amato R, Fontanella MC, Falcinelli B, Beone GM, Bravi E, Marconi O, Benincasa P, Businelli D (2018) Selenium biofortification in rice (Oryza sativa L.) sprouting: effects on Se yield and nutritional traits with focus on phenolic acid profile. J Agric Food Chem 66:4082–4090

    PubMed  Google Scholar 

  • Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dall’ Acqua S, Ertani A, Pilon-Smits EAH, Fabrega-Prats M, Schiavon M (2019) Selenium biofortification differentially affects sulfur metabolism and accumulation of phytochemicals in two rocket species (Eruca Sativa Mill and Diplotaxis Tenuifolia) grown in hydroponics. Plants 8:68

    Google Scholar 

  • de Souza LP, Naake T, Tohge T, Fernie AR (2017) From chromatogram to analyte to metabolite. How to pick horses for courses from the massive web-resources for mass spectral plant metabolomics. GigaScience 6:1–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng X, Liu K, Li M, Zhang W, Zhao X, Zhao Z, Liu X (2017) Difference of selenium uptake and distribution in the plant and selenium form in the grains of rice with foliar spray of selenite or selenate at different stages. Field Crop Res 211:165–171

    Google Scholar 

  • Dhillon KS, Dhillon SK (2003) Distribution and management of seliferous soils. Adv Agron 79:119–184

    CAS  Google Scholar 

  • Di Tullo P, Versini A, Bueno M, Le Hécho I, Thiry Y, Biron P, Castrec-Rouelle M, Pannier F (2015) Stable isotope tracing: a powerful tool for selenium speciation and metabolic studies in non-hyperaccumulator plants (ryegrass Lolium perenne L.). Anal Bioanal Chem 407:9029–9042

    PubMed  Google Scholar 

  • Dimkovikj A, Van Hoewyk D (2014) Selenite activates the alternative oxidase pathway and alters primary metabolism in Brassica napus roots: evidence of a mitochondrial stress response. BMC Plant Biol 14:259

    PubMed  PubMed Central  Google Scholar 

  • Dinkova-Kostova AT, Kostov RV (2012) Glucosinolates and isothiocyanates in health and disease. Trends Mol Med 18:337–347

    CAS  PubMed  Google Scholar 

  • Doerfler H, Lyon D, Nägele T, Sun X, Fragner L, Hadacek F, Egelhofer V, Weckwerth W (2013) Granger causality in integrated GC–MS and LC–MS metabolomics data reveals the interface of primary and secondary metabolism. Metabolomics 9:564–574

    CAS  PubMed  Google Scholar 

  • Dong JZ, Wang YD, Wang SH, Yin LP, Xu GJ, Zheng C, Lei C, Zhang MZ (2013) Selenium increases chlorogenic acid, chlorophyll and carotenoids on Lycine chinense leaves. J Sci Food Agric 93:310–315

    CAS  PubMed  Google Scholar 

  • Durán P, Acuña JJ, Gianfreda L, Azcón R, Funes-Collado V, Mora ML (2015) Endophytic selenobacteria as new inocula for selenium biofortification. Appl Soil Ecol 96:319–326

    Google Scholar 

  • Eiche E, Bardelli F, Nothstein AK, Charlet L, Göttlicher J, Steininger R, Dhillon KS, Sadana US (2015) Selenium distribution and speciation in plant parts of wheat (Triticum aestivum) and Indian mustard (Brassica juncea) from a seleniferous area of Punjab, India. Sci Tot Environ 505:952–961

    CAS  Google Scholar 

  • Eloh K, Sasanelli N, Maxia A, Caboni P (2016) Untargeted metabolomics of tomato plants after root–knot nematode infestation. J Agric Food Chem 64:5963–5968

    CAS  PubMed  Google Scholar 

  • El-Ramady H, Abdalla N, Taha HS, Alshaal T, El-Henawy A, Salah EDF, Shams MS, Youssef MS, Shalaby T, Bayoumi Y, Elhawat N, Shehata S, Sztrik A, Prokisch J, Fari M (2016) Selenium and nano-selenium in plant nutrition. Environ Chem Lett 14:123–147

    CAS  Google Scholar 

  • Farooq MU, Tang Z, Zeng R, Liang Y, Zhang Y, Zheng T, Ei HH, Ye X, Jia X, Zhu J (2019) Accumulation, mobilization, and transformation of selenium in rice grain provided with foliar sodium selenite. J Sci Food Agric 99:2892–2900

    CAS  PubMed  Google Scholar 

  • Fontanella MC, D’Amato R, Regni L, Proietti P, Beone GM, Businelli D (2017) Selenium speciation profiles in biofortified sangiovese wine. J Tr Elem Med Biol 43:87–92

    CAS  Google Scholar 

  • Freeman JL, Tamaoki M, Stushnoff C, Quinn CF, Cappa JJ, Devonshire J, Fakra S, Marcus MA, McGrath S, Van Hoewyk D (2010) Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata. Plant Physiol Biochem 153:1630–1652

    CAS  Google Scholar 

  • Gammelgaard B, Jackson MI, Gabel-Jensen C (2011) Surveying selenium speciation from soil to cell-forms and transformations. Anal Bioanal Chem 399:1743–1763

    CAS  PubMed  Google Scholar 

  • Gao HH, Chen MX, Hu XQ, Chai SS, Qin ML, Cao ZY (2018) Separation of selenium species and their sensitive determination in rice samples by ion-pairing reversed-phase liquid chromatography with inductively coupled plasma tandem mass spectrometry. J Sep Sci 41:432–439

    CAS  PubMed  Google Scholar 

  • Gionfriddo E, Naccarato A, Sindona G, Tagarelli A (2012) A reliable solid phase microextraction-gas chromatography–triple quadrupole mass spectrometry method for the assay of selenomethionine and selenomethylselenocysteine in aqueous extracts: Difference between selenized and not-enriched selenium potatoes. Anal Chim Acta 747:58–66

    CAS  PubMed  Google Scholar 

  • Golubkina NA, Kosheleva OV, Krivenkov LV, Dobrutskaya HG, Nadezhkin S, Caruso G (2017) Intersexual differences in plant growth, yield, mineral composition and antioxidants of spinach (Spinacia oleracea L.) as affected by selenium form. Sci Hortic 225:350–358

    CAS  Google Scholar 

  • Gomez Ojeda A, Corrales Escobosa AR, Wrobel K, Yanez Barrientos E, Wrobel K (2013) Effect of Cd(II) and Se(IV) exposure on cellular distribution of both elements and concentration levels of glyoxal and methylglyoxal in Lepidium sativum. Metallomics 5:1254–1261

    CAS  PubMed  Google Scholar 

  • González-Morales S, Pérez-Labrada F, García-Enciso EL, Leija-Martínez P, Medrano-Macías J, Dávila-Rangel IE, Juárez-Maldonado A, Rivas-Martínez EN, Benavides-Mendoza A (2017) Selenium and sulfur to produce Allium functional crops. Molecules 22:558

    PubMed Central  Google Scholar 

  • Grotti M, Terol A, Todoli JL (2014) Speciation analysis by small-bore HPLC coupled to ICP-MS. Trend Anal Chem 61:92–106

    CAS  Google Scholar 

  • Guardado-Félix D, Serna-Saldivar SO, Cuevas-Rodríguez EO, Jacobo-Velázquez DA, Gutiérrez-Uribe JA (2017) Effect of sodium selenite on isoflavonoid contents and antioxidant capacity of chickpea (Cicer arietinum L.) sprouts. Food Chem 226:69–74

    PubMed  Google Scholar 

  • Guardado-Félix D, Serna-Saldivar SO, Gutiérrez-Uribe JA, Chuck-Hernández C (2019) Selenium in germinated chickpea (Cicer arietinum L.) increases the stability of its oil fraction. Plants 8:113

    PubMed Central  Google Scholar 

  • Guevara Moreno OD, Acevedo Aguilar FJ, Yanez Barrientos E (2018) Selenium uptake and biotransformation and effect of selenium exposure on the essential and trace elements status: comparative evaluation of four edible plants. J Mex Chem Soc 62:247–258

    Google Scholar 

  • Guignardi Z, Schiavon M (2017) Biochemistry of plant selenium uptake and metabolism. In: Pilon-Smits EAH, Winkel LHE, Lin ZQ (eds) Selenium in plants. Molecular, physiological, ecological and evolutionary aspects. Springer, Zurich, pp 21–34

    Google Scholar 

  • Gupta M, Gupta S (2017) An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci 7:2074

    PubMed  PubMed Central  Google Scholar 

  • Jia H, Song Z, Wu F, Ma M, Li Y, Han D, Yang Y, Zhang S, Cui H (2018) Low selenium increases the auxin concentration and enhances tolerance to low phosphorous stress in tobacco. Environ Exp Bot 153:127–134

    CAS  Google Scholar 

  • Jiang Y, El Mehdawi AF, Tripti T, Lima LW, Stonehouse G, Fakra SC, Hu Y, Qi H, Pilon-Smits EAH (2018a) Characterization of selenium accumulation, localization and speciation in buckwheat–Implications for biofortification. Front Plant Sci 9:1583

    PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Schiavon M, Lima LW, Jones RR, El Mehdawi AF, Royer S, Zeng Z, Hu Y, Pilon-Smits EAH, Pilon M (2018b) Comparison of ATP sulfurylase 2 from selenium hyperaccumulator Stanleya pinnata and non-accumulator Stanleya elata reveals differential intracellular localization and enzyme activity levels. BBA General Sub 1862:2363–2371

    CAS  Google Scholar 

  • Jiang L, Liu C, Cao H, Chen Z, Yang J, Cao S, Wei Z (2019) The role of cytokinin in selenium stress response in Arabidopsis. Plant Sci 281:122–132

    CAS  PubMed  Google Scholar 

  • Kapolna E, Laursen KH, Husted S, Larsen EH (2012) Biofortification and isotopic labeling of Se metabolites in onions and carrots following Foilar application of Se and 77Se. Food Chem 133:650–657

    CAS  Google Scholar 

  • Karasinski J, Wrobel K, Corrales Escobosa AR, Konopka A, Bulska E, Wrobel K (2017) Allium cepa L. response to sodium selenite (Se (IV)) studied in plant roots by a LC-MS-based proteomic approach. J Agric Food Chem 65:3995–4004

    CAS  PubMed  Google Scholar 

  • Kieliszek M, Błażejak S (2016) Current knowledge on the importance of selenium in food for living organisms: a review. Molecules 21:609

    Google Scholar 

  • Kolbert Z, Lehotai N, Molnár Á, Feigl G (2016) “The roots” of selenium toxicity: a new concept. PLant Signal Behav 11:e1241935

    PubMed  PubMed Central  Google Scholar 

  • Kopsell DA, Randle WM (1999) Selenium affects the S-alk(en)yl cysteine sulfoxides among short-day onion cultivars. J Am Soc Hortic Sci 124:307–311

    CAS  Google Scholar 

  • Kubachka KM, Meija J, LeDuc DL, Terry N, Caruso JA (2007) Selenium volatiles as proxy to the metabolic pathways of selenium in genetically modified Brassica juncea. Environ Sci Technol 41:1863–1869

    CAS  PubMed  Google Scholar 

  • Labanowska M, Filek M, Koscielniak J, Kurdziel M, Kulis E, Hartikainen H (2012) The effects of short-term selenium stress on Polish and Finnish wheat seedlings—EPR, enzymatic and fluorescence studies. J Plant Physiol 169:275–284

    CAS  PubMed  Google Scholar 

  • Lazo-Vélez MA, Guardado-Félix D, Avilés-González J, Romo-López I, Serna-Saldívar SO (2018) Effect of germination with sodium selenite on the isoflavones and cellular antioxidant activity of soybean (Glycine max). LWT Food Sci Technol 93:64–70

    Google Scholar 

  • Lee J, Finley JW, Harnly JM (2005) Effect of selenium fertilizer on free amino acid composition of broccoli (Brassica oleracea Cv. Majestic) determined by gas chromatography with flame ionization and mass selective detection. J Agric Food Chem 53:9105–9111

    CAS  PubMed  Google Scholar 

  • Lee DK, Yoon MH, Kang YP, Yu J, Park JH, Lee J, Kwon SW (2013) Comparison of primary and secondary metabolites for suitability to discriminate the origins of Schisandra chinensis by GC/MS and LC/MS. Food Chem 141:3931–3937

    CAS  PubMed  Google Scholar 

  • Lehotai N, Kolbert Z, Peto A, Feigl G, Ordog A, Kumar D, Tari I, Erdei L (2012) Selenite-induced hormonal and signalling mechanisms during growth of Arabidopsis thaliana L. J Exp Bot 63:5677–5687

    CAS  PubMed  Google Scholar 

  • Lehotai N, Lyubenova L, Schroder P, Feigl G, Ordog A, Szilagyi K, Erdei L, Kolbert Z (2016) Nitro-oxidative stress contributes to selenite toxicity in pea (Pisum sativum L.). Plant Soil 400:107–122

    CAS  Google Scholar 

  • Lima LW, Pilon-Smits EAH, Schiavon M (2018) Mechanism of selenium hyperaccumulation in plants: a survey of molecular, biochemical and ecological cues. BBA General Sub 1862:2343–2353

    CAS  Google Scholar 

  • Longchamp M, Castrec-Rouelle M, Biron P, Bariac T (2015) Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate. Food Chem 182:128–135

    CAS  PubMed  Google Scholar 

  • Lü J, Zhang J, Jiang C, Deng Y, Özten N, Bosland MC (2016) Cancer chemoprevention research with selenium in the post-SELECT era: promises and challenges. Nutr Cancer 68:1–17

    PubMed  Google Scholar 

  • Mahieu NG, Genenbacher JL, Patti GJ (2016) A roadmap for the XCMS family of software solutions in metabolomics. Curr Opin Chem Biol 30:87–93

    CAS  PubMed  Google Scholar 

  • Mahn A (2017) Modelling of the effect of selenium fertilization on the content of bioactive compounds in broccoli heads. Food Chem 233:492–499

    CAS  PubMed  Google Scholar 

  • Malagoli M, Schiavon M, Pilon-Smits EAH (2015) Effects of selenium biofortification on crop nutritional quality. Front Plant Sci 6:280

    PubMed  PubMed Central  Google Scholar 

  • Malheiros RS, Costa LC, Ávila RT, Pimenta TM, Teixeira LS, Brito FA, Zsögön A, Araújo WL, Ribeiro DM (2019) Selenium downregulates auxin and ethylene biosynthesis in rice seedlings to modify primary metabolism and root architecture. Planta 250:333–345

    CAS  PubMed  Google Scholar 

  • Malorgio F, Diaz KE, Ferrante A, Mensuali-Sodi A, Pezzarossa B (2009) Effects of selenium addition on minimally processed leafy vegetables grown in a floating system. J Sci Food Agric 89:2243–2251

    CAS  Google Scholar 

  • Maneetong S, Chookhampaeng S, Chantiratikul A, Chinrasri O, Thosaikham W, Sittipout R, Chantiratikul P (2013) Hydroponic cultivation of selenium-enriched kale (Brassica oleracea var. alboglabra L.) seedling and speciation of selenium with HPLC–ICP-MS. Microchem J 108:87–91

    CAS  Google Scholar 

  • Marcinkowska M, Barałkiewicz D (2016) Multielemental speciation analysis by advanced hyphenated technique–HPLC/ICP-MS: a review. Talanta 161:177–204

    CAS  PubMed  Google Scholar 

  • Matich AJ, McKenzie MJ, Lill RE, Brummell DA, McGhie TK, Chen RK (2012) Selenoglucosinolates and their metabolites produced in Brassica spp. fertilised with sodium selenate. Phytochemistry 75:140–152

    CAS  PubMed  Google Scholar 

  • Matich AJ, McKenzie MJ, Lill RE, McGhie TK, Chen RKY, Rowan DD (2015) Distribution of selenoglucosinolates and their metabolites in Brassica treated with sodium selenate. J Agric Food Chem 63:1896–1905

    CAS  PubMed  Google Scholar 

  • McKenzie MJ, Chen RK, Leung S, Joshi S, Rippon PE, Joyce NI, McManus MT (2017) Selenium treatment differentially affects sulfur metabolism in high and low glucosinolate producing cultivars of broccoli (Brassica oleracea L.). Plant Physiol Biochem 121:176–186

    CAS  PubMed  Google Scholar 

  • Mimmo T, Tiziani R, Valentinuzzi F, Lucini L, Nicoletto C, Sambo P, Scampicchio M, Pii Y, Cesco S (2017) Selenium biofortification in Fragaria× ananassa: implications on strawberry fruits quality, content of bioactive health beneficial compounds and metabolomic profile. Front Plant Sci 8:1887

    PubMed  PubMed Central  Google Scholar 

  • Misra BB, Fahrmann JF, Grapov D (2017) Review of emerging metabolomic tools and resources: 2015–2016. Electrophoresis 38:2257–2274

    CAS  PubMed  Google Scholar 

  • Montes-Bayón M, Sharar M, Corte-Rodriguez M (2018) Trends on (elemental and molecular) mass spectrometry based strategies for speciation and metallomics. TrAC Trend Anal Chem 104:4–10

    Google Scholar 

  • Moreno-Martin G, Sanz-Landaluze J, León-Gonzalez ME, Madrid Y (2019) In-vivo solid phase microextraction for quantitative analysis of volatile organoselenium compounds in plants. Anal Chim Acta 1081:72–80

    CAS  PubMed  Google Scholar 

  • Mostofa MG, Hossain MA, Siddiqui N, Fujita M, PhanTran LS (2017) Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants. Chemosphere 178:212–223

    CAS  PubMed  Google Scholar 

  • Ni Z, Liu Y, Qu M (2014) Determination of 5 natural selenium species in selenium-enriched bamboo shoots using LC-ICP-MS. Food Sci Biotechnol 23:1049–1053

    CAS  Google Scholar 

  • Novák O, Napier R, Ljung K (2017) Zooming in on plant hormone analysis: tissue-and cell-specific approaches. Ann Rev Plant Biol 68:323–348

    Google Scholar 

  • Ogra Y, Anan Y (2012) Selenometabolomics explored by speciation. Biol Pharm Bull 35:1863–1869

    CAS  PubMed  Google Scholar 

  • Ogra Y, Kitaguchi T, Ishiwata K, Suzuki N, Toida T, Suzuki KT (2009) Speciation of selenomethionie metabolites in wheat germ extract. Metallomics 1:78–86

    CAS  Google Scholar 

  • Ogra Y, Katayama A, Ogihara Y, Yawata A, Anan Y (2013) Analysis of animal and plant selenometabolites in roots of selenium accumulator Brassica rapa var. peruviridis, by speciation. Metallomics 5:429–436

    CAS  PubMed  Google Scholar 

  • Ogra Y, Ogihara Y, Anan Y (2017) Comparison of the metabolism of inorganic and organic selenium species between two selenium accumulator plants, garlic and Indian mustard. Metallomics 9:61–68

    CAS  PubMed  Google Scholar 

  • Ouerdane L, Aureli F, Flis P, Bierla K, Preud'Homme H, Cubadda F, Szpunar J (2013) Comprehensive speciation of low-molecular weight selenium metabolites in mustard seeds using HPLC–electrospray linear trap/orbitrap tandem mass spectrometry. Metallomics 5:1294–1304

    CAS  PubMed  Google Scholar 

  • Parida AK, Panda A, Rangani J (2018) Metabolomics-guided elucidation of abiotic stress tolerance mechanisms in plants. In: Ahanger MA, Singh VP, Tripathi DH, Alam P, Alyemeni MN, Ahmad P (eds) Plant metabolites and regulation under environmental stress. Academic Press, Cambridge, pp 89–131

    Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22:4056–4075

    CAS  Google Scholar 

  • Patra AR, Hajra S, Baral R, Bhattacharya S (2019) Use of selenium as micronutrients and for future anticancer drug: a review. Nucleus. https://doi.org/10.1007/s13237-019-00306-y

    Article  Google Scholar 

  • Pilon-Smits EAH (2017) Plant Se uptake and metabolism—how are hyperaccumulators different? In: Pilon-Smits EAH, Winkel LHE, Lin ZQ (eds) Selenium in plants. Springer, Zurich, pp 56–66

    Google Scholar 

  • Poblaciones MJ, Rodrigo S, Santamaría O, Chen Y, McGrath SP (2014) Agronomic selenium biofortification in Triticum durum under Mediterranean conditions: from grain to cooked pasta. Food Chem 146:378–384

    CAS  PubMed  Google Scholar 

  • Poschenrieder C, Cabot C, Martos S, Gallago B, Barcelo J (2013) Do toxic ions induce hormesis in plants? Plant Sci 212:15–25

    CAS  PubMed  Google Scholar 

  • Pröfrock D, Prange A (2012) Inductively coupled plasma-mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: a review of challenges, solutions, and trends. Appl Spectrosc 66:843–868

    PubMed  Google Scholar 

  • Puccinelli M, Malorgio F, Pezzarossa B (2017) Selenium enrichment of horticultural crops. Molecules 22:933

    PubMed Central  Google Scholar 

  • Pyrzynska K, Sentkowska A (2019) Liquid chromatographic analysis of selenium species in plant materials. TrAC Trend Anal Chem 111:128–138

    CAS  Google Scholar 

  • Rayman M (2012) Selenium and human health. Lancet 379:1256–1268

    CAS  PubMed  Google Scholar 

  • Ribeiro DM, Silva Junior DD, Cardoso FB, Martins AO, Silva WA, Nascimento VL, Araújo WL (2016) Growth inhibition by selenium is associated with changes in primary metabolism and nutrient levels in Arabidopsis thaliana. Plant Cell Environ 39:2235–2246

    CAS  PubMed  Google Scholar 

  • Robbins RJ, Keck AS, Banuelos G, Finley JW (2005) Cultivation conditions and selenium fertilization alter thephenolic profile, glucosinolate, and sulforaphane content of broccoli. J Med Food 8:204–214

    CAS  PubMed  Google Scholar 

  • Rothwell JA, Perez-Jimenez J, Neveu V, Medina-Remón A, M’Hiri N, García-Lobato P, Manach C, Knox C, Eisner R, Wishart DS, Scalbert A (2013) Phenol-Explorer 3.0: a major update of the Phenol-Explorerc database to incorporate data on the effects of food processing on polyphenol content. Database (Oxford) bat070

  • Ruszczynska A, Konopka A, Kurek E, Torres Elguera J, Bulska E (2017) Investigation of biotransformation of selenium in plants using spectrometric methods. Spectrochim Acta Part B 130:7–16

    CAS  Google Scholar 

  • Sánchez-Rodas D, Mellano F, Martínez F, Palencia P, Giráldez I, Morales E (2016) Speciation analysis of Se-enriched strawberries (Fragaria ananassa Duch) cultivated on hydroponics by HPLC-TR-HG-AFS. Microchem J 127:120–124

    Google Scholar 

  • Sarabia LD, Hill CB, Boughton BA, Roessner U (2018) Advances of metabolite profiling of plants in challenging environments. Ann Plant Rev Online 1:1–45

    Google Scholar 

  • Schiavon M, Pilon-Smits EAH (2017a) The fascinating facets of plant selenium accumulation–biochemistry, physiology, evolution and ecology. New Phytol 213:1582–1596

    CAS  PubMed  Google Scholar 

  • Schiavon M, Pilon-Smits EAH (2017b) Selenium biofortification and phytoremediation phytotechnologies: a review. J Environ Qual 46:10–19

    CAS  PubMed  Google Scholar 

  • Schiavon M, dall’ Acqua S, Mietto A, Pilon-Smits EAH, Sambo P, Masi A, Malagoli M (2013) Selenium fertilization alters the chemical composition and antioxidant constituents of tomato (Solanum lycopersicon L.). J Agric Food Chem 61:0542–10554

    Google Scholar 

  • Schiavon M, Berto C, Malagoli M, Trentin A, Sambo P, Dall'Acqua S, Pilon-Smits EAH (2016) Selenium biofortification in radish enhances nutritional quality via accumulation of methyl-selenocysteine and promotion of transcripts and metabolites related to glucosinolates, phenolics, and amino acids. Front Plant Sci 7:1371

    PubMed  PubMed Central  Google Scholar 

  • Sentkowska A, Pyrzynska K (2018) Hydrophilic interaction liquid chromatography in the speciation analysis of selenium. J Chromatogr B 1074–1075:8–15

    Google Scholar 

  • Shah M, Meija J, Caruso JA (2007) Relative mass defect filtering of high-resoltion mass spectra for exploring minor selenium volatiles in selenium-enriched green onions. Anal Chem 79:846–853

    CAS  PubMed  Google Scholar 

  • Shahverdi MA, Omidi H, Tabatabaei SJ (2018) Plant growth and steviol glycosides as affected by foliar application of selenium, boron, and iron under NaCl stress in Stevia rebaudiana Bertoni. Ind Crops Prod 125:408–415

    Google Scholar 

  • Shao S, Mi X, Ouerdane L, Lobinski R, García-Reyes JF, Molina-Díaz A, Vass A, Dernovics M (2014) Quantification of Se-methylselenocysteine and its γ-glutamyl derivative from naturally Se-enriched green bean (Phaseolus vulgaris vulgaris) after HPLC-ESI-TOF-MS and Orbitrap MSn-based identification. Food Anal Methods 7:1147–1157

    Google Scholar 

  • Sura-de Jong M, Reynolds RJ, Richterova K, Musilova L, Staicu LC, Chocholata I, Cappa JJ, Taghavi S, van der Lelie D, Frantik T, Dolinova I, Strejcek M, Cochran AT, Lovecka P, Pilon-Smits EAH (2015) Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties. Front Plant Sci 6:113

    PubMed  PubMed Central  Google Scholar 

  • Tamaoki M, Maruyama-Nakashita A (2017) Molecular mechanisms of selenium responses and resistance in plants. In: Pilon-Smits EAH, Winkel LHE, Lin ZQ (eds) Selenium in plants. Springer, Cham, pp 35–48

    Google Scholar 

  • Tamaoki M, Freeman JL, Pilon-Smits EAH (2008) New insights into the roles of ethylene and jasmonic acid in the acquisition of selenium resistance in plants. Plant Signal Behav 3:865–867

    PubMed  PubMed Central  Google Scholar 

  • Tang W, Dang F, Evans D, Zhong H, Xiao L (2017) Understanding reduced inorganic mercury accumulation in rice following selenium application: selenium application routes, speciation and doses. Chemosphere 169:369–376

    CAS  PubMed  Google Scholar 

  • Thiruvengadam M, Chung IM (2015) Selenium, putrescine, and cadmium influence health-promoting phytochemicals and molecular-level effects on turnip (Brassica rapa ssp. rapa). Food Chem 173:185–193

    CAS  PubMed  Google Scholar 

  • Thosaikham W, Jitmanee K, Sittipout R, Maneetong S, Chantiratikul A, Chantiratikul P (2014) Evaluation of selenium species in selenium-enriched pakchoi (Brassica chinensis Jusl var parachinensis (Bailey) Tsen & Lee) using mixed ion-pair reversed phase HPLC–ICP-MS. Food Chem 145:736–742

    CAS  PubMed  Google Scholar 

  • Tiago FJ, Rodrigues JA, Caldana C, Schmidt R, van Dongen JT, Thomas-Oates J, António C (2016) Mass spectrometry-based plant metabolomics: metabolite responses to abiotic stress. Mass Spectrom Rev 35:620–649

    Google Scholar 

  • Tian M, Xu X, Liu Y, Xie L, Pan S (2016) Effect of Se treatment on glucosinolate metabolism and health-promoting compounds in the broccoli sprouts of three cultivars. Food Chem 190:374–380

    CAS  PubMed  Google Scholar 

  • Tian M, Xu X, Liu F, Fan X, Pan S (2018a) Untargeted metabolomics reveals predominant alterations in primary metabolites of broccoli sprouts in response to pre-harvest selenium treatment. Food Res Int 111:205–211

    CAS  PubMed  Google Scholar 

  • Tian M, Yang Y, Ávila FW, Fish T, Yuan H, Hui M, Pan S, Thannhauser TW, Li L (2018b) Effects of selenium supplementation on glucosinolate biosynthesis in broccoli. J Agric Food Chem 66:8036–8044

    CAS  PubMed  Google Scholar 

  • Tie M, Zhuang X, Han J, Liu L, Hu Y, Li H (2015) Selenium speciation in soybean by high performance liquid chromatography coupled o electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS). Microchem J 123:70–75

    CAS  Google Scholar 

  • Tie M, Sun J, Gao Y, Yao Y, Wang T, Zhong H, Li H (2018) Identification and quantitation of seleno-amino acids in mung bean sprouts by high-performance liquid chromatography coupled with mass spectrometry (HPLC–MS). Eur Food Res Technol 244:491–500

    CAS  Google Scholar 

  • Tognon GB, Sanmartín C, Alcolea V, Cuquel FL, Goicoechea N (2016) Mycorrhizal inoculation and/or selenium application affect post-harvest performance of snapdragon flowers. Plant Growth Regul 78:389–400

    CAS  Google Scholar 

  • Torres Elguera JC, Yanez Barrientos E, Wrobel K, Wrobel K (2013) Effect of cadmium (Cd(II)), selenium (Se(IV)) and their mixtures on phenolic compounds and antioxidant capacity in Lepidium sativum. Acta Physiol Plant 35:431–441

    Google Scholar 

  • Trolove SN, Tan Y, Morrison SC, Feng L, Eason J (2018) Development of a method for producing selenium-enriched radish sprouts. LWT 95:187–192

    CAS  Google Scholar 

  • Van Hoewyk D (2013) A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. Ann Bot 112:965–972

    PubMed  PubMed Central  Google Scholar 

  • Van Hoewyk D, Çakir O (2017) Manipulating selenium metabolism in plants: a simple twist of metabolic fate can alter selenium tolerance and accumulation. In: Pilon-Smits EAH, Winkel LHE, Lin ZQ (eds) Selenium in plants. Springer, Cham, pp 165–176

    Google Scholar 

  • Van Hoewyk D, Takahasi H, Inoue E, Hess A, Tamaoki M, Pilon-Smits EAH (2008) Transcriptome analysis give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant 132:236–253

    PubMed  Google Scholar 

  • Vogiatzis CG, Zachariadis GA (2014) Tandem mass spectrometry in metallomics and the involving role of ICP-MS detection: a review. Anal Chim Acta 819:1–14

    CAS  PubMed  Google Scholar 

  • Wan J, Zhang M, Adhikari B (2018) Advances in selenium-enriched foods: from the farm to the fork. Tr Food Sci Technol 76:1–5

    CAS  Google Scholar 

  • Wang YD, Wang X, Wong YS (2012) Proteomics analysis reveals multiple regulatory mechanisms in response to selenium in rice. J Proteom 75:1849–1866

    CAS  Google Scholar 

  • Wang P, Menzies NW, Lombi E, McKenna BA, James S, Tang C, Kopittke PM (2015) Synchrotron-based X-ray absorption near-edge spectroscopy imaging for laterally resolved speciation of selenium in fresh roots and leaves of wheat and rice. J Exp Bot 66:4795–4806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Wu L, Zhang H, Wu W, Zhang M, Li X, Wu H (2016) Regulation of the phenylpropanoid pathway: a mechanism of selenium tolerance in peanut (Arachis hypogaea L.) seedlings. J Agric Food Chem 64:3626–3635

    CAS  PubMed  Google Scholar 

  • Wang J, Cappa JJ, Harris JP, Edger PP, Zhou W, Pires JC, Pilon-Smits EAH (2018) Transcriptome-wide comparison of selenium hyperaccumulator and nonaccumulator Stanleya species provides new insight into key processes mediating the hyperaccumulation syndrome. Plant Biotechnol J 16:1582–1594

    CAS  PubMed Central  Google Scholar 

  • White PJ (2018) Selenium metabolism in plants. Biochim Biophys Acta General Sub 1862:2333–2342

    CAS  Google Scholar 

  • Wiesner-Reinhold M, Schreiner M, Baldermann S, Schwarz D, Hanschen FS, Kipp AP, Rowan DD, Bentley-Hewitt KL, McKenzie MJ (2017) Mechanisms of selenium enrichment and measurement in brassicaceous vegetables, and their application to human health. Front Plant Sci 8:1365

    PubMed  PubMed Central  Google Scholar 

  • Winkel LHE, Vriens B, Jones GD, Schneider LS, Pilon-Smits EAH, Banuelos GS (2015) Selenium cycling across soil–plant–atmosphere interfaces: a critical review. Nutrients 7:4199–4239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wrobel K, Wrobel K, Kannamkumarath SS, Caruso JA, Wysocka IA, Bulska E, Swiatek J, Wierzbicka M (2004) HPLC-ICP-MS speciation of selenium in enriched onion leaves—a potential dietary source of Se-methylselenocysteine. Food Chem 86:617–623

    CAS  Google Scholar 

  • Wu Z, Yin X, Bañuelos GS, Lin ZQ, Liu Y, Li M, Yuan L (2016) Indications of selenium protection against cadmium and lead toxicity in oilseed rape (Brassica napus L.). Front Plant Sci 7:1875

    PubMed  PubMed Central  Google Scholar 

  • Xieping S, Yi H, Chen Y, Youjin L, Tan P, Xie Y (2018) Effects of different concentrations of Se6+ on selenium absorption, transportation, and distribution of citrus seedlings (C. junos cv. Ziyang xiangcheng). J Plant Nutr 41:168–177

    CAS  Google Scholar 

  • Yanez Barrientos E, Rodriguez Flores C, Wrobel K, Wrobel K (2012) Impact of cadmium and selenium exposure on trace elements, fatty acids and oxidative stress in Lepidium sativum. J Mex Chem Soc 56:3–9

    Google Scholar 

  • Yasin M, El-Mehdawi AF, Pilon-Smits EAH, Faisal M (2015) Selenium-fortified wheat:potential of microbes for biofortification of selenium and other essential nutrients. Int J Phytorem 17:777–786

    CAS  Google Scholar 

  • Yin H, Qi Z, Li M, Ahammed GJ, Chu X, Zhou J (2019) Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L. Ecotoxicol Environ Safety 169:911–917

    CAS  PubMed  Google Scholar 

  • Zembala M, Filek M, Walas S, Mrowiec H, Kornas A, Miszalski Z, Hartikainen H (2010) Effect of selenium on macro and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. Plant Soil 329:457–468

    CAS  Google Scholar 

  • Zeng R, Farooq MU, Wang L, Su Y, Zheng T, Ye X, Jia X, Zhu J (2019) Study on differential protein expression in natural selenium-enriched and non-selenium-enriched rice based on iTRAQ quantitative proteomics. Biomolecules 9:130

    PubMed Central  Google Scholar 

  • Zhang C, Lai F, Gao A, Zhou X (2017) Absorption, translocation and redistribution of selenium supplied at different growth stages of rice. Int J Agric Biol 19:1601–1607

    CAS  Google Scholar 

  • Zhou Y, Tang Q, Wu M, Mou D, Liu H, Wang S, Zhang C, Ding L, Luo J (2018) Comparative transcriptomics provides novel insights into the mechanisms of selenium tolerance in the hyperaccumulator plant Cardamine hupingshanensis. Sci Rep 8:2789

    PubMed  PubMed Central  Google Scholar 

  • Zhu Z, Chen Y, Shi G, Zhang X (2017) Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system. Food Chem 219:79–184

    Google Scholar 

  • Zhu Z, Zhang Y, Liu J, Chen Y, Zhang X (2018) Exploring the effects of selenium treatment on the nutritional quality of tomato fruit. Food Chem 252:9–15

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support from National Council of Science and Technology, Mexico (Fondo Sectorial de Investigación para la Educación, Consejo Nacional de Ciencia y Tecnologia), project A1-S-9671, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Wrobel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by F. Araniti.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wrobel, K., Guerrero Esperanza, M., Yanez Barrientos, E. et al. Different approaches in metabolomic analysis of plants exposed to selenium: a comprehensive review. Acta Physiol Plant 42, 125 (2020). https://doi.org/10.1007/s11738-020-03113-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-020-03113-0

Keyword

Navigation