Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 25, 2020

Blend polyethersulfone/zirconium oxychloride octahydrate membranes crosslinked by polyvinyl alcohol layer for high saline water desalination

  • Radwa Taman , Moustapha S. Mansour , Dina A. Elgayar , Heba Abdallah EMAIL logo and Marwa S. Shalaby

Abstract

Mixed matrix membranes were prepared by blending polyethersulfone with zirconium oxychloride octahydrate (ZOH) solution, and coating by polyvinyl alcohol layer. Different analyses were applied in the prepared membranes. Membranes performances were examined using different salty solutions concentrations (5000, 10,000 and 20,000 mg/L) and a real sample from highly concentrated seawater (brine) of 1,30,900 mg/L. The results indicate that blending polyethersulfone with 1.5% ZOH and coating with polyvinyl alcohol (PVA) cross-linking layer (M4) provides salt rejection of 99.9% with permeate flux of 32.4 L/m2.h for the salt solution of 5000 mg/L, while salt rejection was 92% with permeate flux of 11.1 L/m2.h for the salt solution of 1,30,900 mg/L. The results indicate enhancement in the hydrophilicity of the membranes especially after coating by the PVA layer and increasing the ZOH%, such as the high permeate flux and the lowest contact angle of prepared membrane M4 (1.5% ZOH) which was 39.7°. A long time experiment was applied on the prepared membrane (M4), where the results indicate that the permeate flux for a long time was approximately fixed for 120 h, which indicates that the membrane can be considered as a self-cleaning membrane.


Corresponding author: Heba Abdallah, Chemical Engineering and Pilot Plant Department, Engineering Research Division, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, Giza, Egypt, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Marinas, B. J., Mayes, A. M. Nanosci. Technol. 2008, 452, 301–310. https://doi.org/10.1142/9789814287005_0035.Search in Google Scholar

2. Elimelech, M., Phillip, W. A. Science 2011, 333, 712–717. https://doi.org/10.1126/science.1200488.Search in Google Scholar PubMed

3. Lee, K. P., Arnot, T. C., Mattia, D. J. Membr. Sci. 2011, 370, 1–22. https://doi.org/10.1016/j.memsci.2010.12.036.Search in Google Scholar

4. Shenvi, S. S., Isloor, A. M., Ismail, A. F. Desalination 2015, 368, 10–26. https://doi.org/10.1016/j.desal.2014.12.042.Search in Google Scholar

5. Lau, W. J., Gray, S., Matsuura, T., Emadzadeh, D., Chen, J. P., Ismail, A. F. Water. Res. 2015, 80, 306–324. https://doi.org/10.1016/j.watres.2015.04.037.Search in Google Scholar PubMed

6. Kang, G., Cao, Y. Water Res. 2012, 46, 584–600. https://doi.org/10.1016/j.watres.2011.11.041.Search in Google Scholar PubMed

7. Wang, N. C., Fang, L. F., Wang, J., Zhang, P., Wang, W. P., Lin, C. E., Xiao, L., Chen, C., Zhao, B., Abdallah, H., et al. J. Appl. Polym. Sci. 2018, 47068, 1–9. https://doi.org/10.1002/app.47068.Search in Google Scholar

8. Lau, W. J., Ismail, A. F., Misdan, N., Kassim, M. A. Desalination 2012, 287, 190–199. https://doi.org/10.1016/j.desal.2011.04.004.Search in Google Scholar

9. Asim, K. G., Eric, M. V. H. J. Membr. Sci. 2009, 336, 140–148. https://doi.org/10.1016/j.memsci.2009.03.024.Search in Google Scholar

10. Tang, C. Y., Kwon, Y., Leckie, J. O. Desalination 2009, 242,168–182. https://doi.org/10.1016/j.desal.2008.04.004.Search in Google Scholar

11. Liu, Y. H., Benqiao, H., Jianxin, L., Sanderson, R. D., Li, L., Zhang, S. J. Membr. Sci. 2011, 373, 98–106. https://doi.org/10.1016/j.memsci.2011.02.045.Search in Google Scholar

12. Zhou, M., Zhang, P., Fang, L., Zhu, B., Wang, J., Chen, J., Abdallah, H. J Hazard. Mater. 2019, 373, 168–175. https://doi.org/10.1016/j.jhazmat.2019.03.088.Search in Google Scholar PubMed

13. Jamil, T. S., Mansor, E. S., Abdallah, H., Shaban, A. M., Souaya, E. G. J. Environ. Chem. Eng. 2018, 6 ,3273–3282. https://doi.org/10.1016/j.jece.2018.05.006.Search in Google Scholar

14. Abdallah, H., Taman, R., Elgayar, D., Farag, H. Eur. Polym. J. 2018, 108,542–553. https://doi.org/10.1016/j.eurpolymj.2018.09.035.Search in Google Scholar

15. Fujioka, T., Khan, S. J., Poussade, Y. Sep. Purif. Technol. 2012, 98, 503–515. https://doi.org/10.1016/j.seppur.2012.07.025.Search in Google Scholar

16. Wang, M., Wu, L. G, Mob, J. X., Gao, C. J. J. Membr. Sci. 2005, 274, 200–208. https://doi.org/10.1016/j.memsci.2005.05.035.Search in Google Scholar

17. Yang, M. C., Liu, T. Y. J. Membr. Sci. 2003, 226, 119–130. https://doi.org/10.1016/j.memsci.2003.08.013.Search in Google Scholar

18. Ramamoorthy, M., Ulbricht, M. J. Membr. Sci. 2003, 217, 207–214. https://doi.org/10.1016/S0376-7388(03)00133-9.Search in Google Scholar

19. Yang, G., Zhang, L., Feng, H. J. Membr. Sci. 1993, 16, 31–40. https://doi.org/10.1016/S0376-7388(99)00095-2.Search in Google Scholar

20. Rajakumaran, R., Boddu, V., Kumar, M., Shalaby, M. S., Abdallah, H., Chetty, R. Desalination 2019, 467, 245–256. https://doi.org/10.1016/j.desal.2019.06.018.Search in Google Scholar

21. Yu, L., Deana, K., Lin, L. Prog. Polym. Sci. 2006, 31, 576–602. https://doi.org/10.1016/j.progpolymsci.2006.03.002.Search in Google Scholar

22. Semiat, R., Hasson, D. Rev. Chem. Eng. 2012, 28, 43–60. https://doi.org/10.1515/revce-2011-0019.Search in Google Scholar

23. Reddya, A. V. R., Patelb, H. R. Desalination 2008, 221, 318–323. https://doi.org/10.1016/j.desal.2007.01.089.Search in Google Scholar

24. Wu, L., Sunb, J., Wang, Q. J. Membr. Sci. 2006, 285, 290–298. https://doi.org/10.1016/j.memsci.2006.08.033.Search in Google Scholar

25. Ehsan, S., Toraj, M. Desalination 2009, 249, 850–854. https://doi.org/10.1016/j.desal.2008.12.066.Search in Google Scholar

26. Balazs, K., Gabor, K. J. Memb. Sci. 1991, 62, 201–210. https://doi.org/10.1016/0376-7388(91)80062-B.Search in Google Scholar

27. Tang, B., Huo, Z., Wu, P. J. Memb. Sci. 2008, 320,198–205. https://doi.org/10.1016/j.memsci.2008.04.002.Search in Google Scholar

28. Yongqiang, G., Song, Z., Zhihua, Q., Yixuan, Z., Baodong, S., Zhi, W., Jixiao, W. Desalination 2018, 430, 74–85. https://doi.org/10.1016/j.desal.2017.12.055.Search in Google Scholar

29. Pham, V. A., Santerre, J. P., Matsuura, T., Narbaitz, R. M. J. Appl. Poly. Sci. 1999, 73, 1363–1378. https://doi.org/10.1002/(SICI)1097-4628(19990822)73:8<1363::AID-APP3>3.0.CO;2-P.10.1002/(SICI)1097-4628(19990822)73:8<1363::AID-APP3>3.0.CO;2-PSearch in Google Scholar

30. Ananth, A., Arthanareeswaran, G., Wang, H. Desalination 2012, 287, 61–70. https://doi.org/10.1016/j.desal.2011.11.030.Search in Google Scholar

31. Ani, I., Zain, N. M., Noordinb, M. Y. Desalination 2007, 207, 324–339. https://doi.org/10.1016/j.desal.2006.08.008.Search in Google Scholar

32. Saeki, D., Nagao, S., Sawada, I., Ohmukai, Y., Maruyama, T., Matsuyama, H. J. Membr. Sci. 2013, 428, 403–409. https://doi.org/10.1016/j.memsci.2012.10.038.Search in Google Scholar

33. Shaban, M., AbdAllah, H., Said, L., Ahmed, A M. J. Polym. Res. 2019, 26,1–12. https://doi.org/10.1007/s10965-019-1831-4.Search in Google Scholar

34. Judes, J., Kamaraj, V. Mater. Sci.-Poland 2009, 27, 407–415.10.1016/j.ccl.2009.03.003Search in Google Scholar PubMed

35. Fonseca dos Reis, E., Campos, F. S., Lage, A. P., Leite, R. C., Heneine, L. G., Vasconcelos, W. L., Lobato, Z. I. P., Mansur, H. S. Mater. Res. 2006, 9, 185–191. https://doi.org/10.1016/j.saa.2019.117810.Search in Google Scholar PubMed

36. Guo, R., Fang, X., Wu, H., Jiang, Z. J. Membr. Sci. 2008, 322, 32–38. https://doi.org/10.1016/j.memsci.2008.05.015.Search in Google Scholar

37. Hu, Y., Lu, K., Yan, F., Shi, Y., Yu, P., Yu, S., Li, S., Gao, C. J. Membr. Sci. 2016, 501, 209–219. https://doi.org/10.1016/j.memsci.2015.12.003.Search in Google Scholar

38. Thomas, C. W. M. Can. J. Chem. 1968, 46, 3491–349. https://doi.org/10.1139/v68-579.Search in Google Scholar

39. Ahmad, A., Jamshaid, F., Adrees, M., Iqbal, S. S., Sabir, A., Riaz, T., Zaheer, H., Islam, A., Jamil, T. Desalination 2017, 420, 136–144. https://doi.org/10.1016/j.desal.2017.07.007.Search in Google Scholar

40. Chen, K., Xiao, C., Huang, Q., Liu, H., Tang, Y. Desalination 2018, 425, 175–184. https://doi.org/10.1016/j.desal.2017.10.004.Search in Google Scholar

41. Sabir, A., Falath, W., Jacob, K. I., Shafiq, M., Munawar, M. A., Islam, A., Gull, N., Butt, M. T. Z., Sanaullah, K., Jamil, T. Eur. Polym J. 2016, 85, 266–278. https://doi.org/10.1016/j.eurpolymj.2016.10.032.Search in Google Scholar

42. Xie, W., Geise, G. M., Freeman, B. D., Lee, H., Byun, G., McGrath, J. E. J. Membr. Sci. 2012, 152, 403–404. https://doi.org/10.1016/j.memsci.2012.02.038.Search in Google Scholar

Received: 2020-02-19
Accepted: 2020-03-28
Published Online: 2020-06-25
Published in Print: 2020-07-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.5.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2020-0030/html
Scroll to top button