Skip to main content
Log in

Methanol and Dimethyl Ether Synthesis from CO2 and H2 in the Flow-Circulation Mode

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Processes of converting CO2 to methanol and dimethyl ether (DME) in a flow-circulation mode where the converted gas is partially returned to the reactor are studied to address the issue of utilizing carbon dioxide emissions. Experimental data are presented on methanol synthesis (industrial catalyst MegaMax 507) and the direct synthesis of DME (MegaMax 507/industrial zeolite TsVM in a mass ratio of 1 : 1). In methanol synthesis from synthesis gas (composition, vol %: Н2 76.6, СО2 19.8, and N2 3.6), high СО2 conversion of 84–99.6% is achieved at 240–260°С and a pressure of 5.3 MPa with low selectivity in regard to the side reaction (<4.7% synthesis of CO). The maximum specific productivity of methanol at 260°C is 1.24 kg (kgcat h)−1. Experiments performed under special conditions show that slight heating (up to 10°C) is observed at the inlet into the catalyst bed under methanol synthesis condition, thus indicating that the reactor is of polytropic type. In the synthesis of DME, the yield of DME per weight amount of a bifunctional catalyst lies within the range of 0.08–0.17 kg (kgcat h)−1, depending on the conditions of the reaction. In addition, the conversion of methanol in DME is no lower than 42%, СО2 conversion lies in the range of 79–96%, and DME synthesis proceeds almost under isothermal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Cuéllar-Franca, R.M. and Azapagic, A., J. CO2 Util., 2015, vol. 9, pp. 82–102.

  2. Quadrelli, E.A., Centi, G., Duplan, J.-L., and Perathoner, S., ChemSusChem, 2011, vol. 4, no. 9, pp. 1194–1215.

    Article  CAS  Google Scholar 

  3. Klankermayer, J., Wesselbaum, S., Beydoun, K., and Leitner, W., Angew. Chem., Int. Ed., 2016, vol. 55, no. 26, pp. 7296–7343.

    Article  CAS  Google Scholar 

  4. Schakel, W., Oreggioni, G., Singh, B., Strømman, A., and Ramírez, A., J. CO2 Util., 2016, vol. 16, pp. 138–149.

  5. Transformation and Utilization of Carbon Dioxide, Bhanage, B.M. and Arai, M., Eds., Berlin: Springer, 2014.

    Google Scholar 

  6. Saravanan, K., Ham, H., Tsubaki, N., and Bae, J.W., Appl. Catal., B, 2017, vol. 217, pp. 494–522.

    Article  CAS  Google Scholar 

  7. Olah, G.A., Goeppert, A., and Prakash, G.K.S., J. Org. Chem., 2009, vol. 74, no. 2, pp. 487–498.

    Article  CAS  Google Scholar 

  8. Kunkes, E. and Behrens, M., in Chemical Energy Storage, Schlögl, R., Ed., Berlin/Boston: De Gruyter, 2013, pp. 413–442.

    Google Scholar 

  9. Doss, B., Ramos, C., and Atkins, S., Energy Fuels, 2009, vol. 23, no. 9, pp. 4647–4650.

    Article  CAS  Google Scholar 

  10. Sahibzada, M., Metcalfe, I. S., and Chadwick, D., J. Catal., 1998, vol. 174, no. 2, pp.111–118.

    Article  CAS  Google Scholar 

  11. Pontzen, F., Liebner, W., Gronemann, V., Rothaemel, M., and Ahlers, B., Catal. Today, 2011, vol. 171, no. 1, pp. 242–250.

    Article  CAS  Google Scholar 

  12. Toyir, J., Miloua, R., Elkadri, N.E., Nawdali, M., Toufik, H., Miloua, F., and Saito, M., Phys. Procedia, 2009, vol. 2, no. 3, pp. 1075–1079.

    Article  CAS  Google Scholar 

  13. An, X., Zuo, Y.-Z., Zhang, Q., Wang, D.-Z., and Wang, J.-F., Ind. Eng. Chem. Res., 2008, vol. 47, no. 17, pp. 6547–6554.

    Article  CAS  Google Scholar 

  14. Methanol Science and Engineering, Basile, A. and Dalena, F., Eds., Amsterdam: Elsevier, 2018.

    Google Scholar 

  15. Busca, G., Heterogeneous Catalytic Materials: Solid State Chemistry, Surface Chemistry and Catalytic Behavior, Amsterdam: Elsevier, 2014, ch. 9.

    Google Scholar 

  16. Kipnis, M.A., Belostotskii, I.A., Volnina, E.A., Lin, G.I., and Marshev, I.I., Kinet. Catal., 2018, vol. 59, no. 6, pp. 754–765.

    Article  CAS  Google Scholar 

  17. Kipnis, M.A., Katal. Prom-sti, 2017, no. 4, pp. 266–277.

  18. Kipnis, M.A., Belostotskii, I.A., Volnina, E.A., and Lin, G.I., Catal. Ind., 2019, vol. 11, no. 1, pp. 53–58.

    Article  Google Scholar 

Download references

Funding

This work was supported by a grant from the Russian Scientific Foundation, project no. 17-73-30 046. It was performed at the Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. I. Lin, P. V. Samokhin or M. A. Kipnis.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, G.I., Samokhin, P.V. & Kipnis, M.A. Methanol and Dimethyl Ether Synthesis from CO2 and H2 in the Flow-Circulation Mode. Catal. Ind. 12, 101–109 (2020). https://doi.org/10.1134/S2070050420020051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050420020051

Keywords:

Navigation