Skip to main content
Log in

Producing Bioethanol from Miscanthus: Experience of Primary Scale-Up

  • BIOCATALYSIS
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The demand for precursors obtained by biotechnological means is constantly growing in technical chemistry. The use of bioethanol is therefore of interest in the production of ethylene. In this work, Miscanthus sacchariflorus is used as a raw material for the production of bioethanol for the first time. The stage of the chemical treatment of miscanthus with 4 wt % nitric acid solution is successfully scaled-up under the conditions of pilot industrial production, and the products of nitric acid treatment (PNTs) are obtained with a yield of 37.4% and a 96.0% content of hydrolyzable components. It is shown that preliminary chemical treatment of miscanthus with nitric acid, regardless of its type, allows substrates with similar chemical compositions to be obtained. The process is scaled up for the first time in a fermenter with a capacity of 11 L (a scaling factor of 1 : 8) to combine the saccharification and fermentation of PNTs from miscanthus and raise the concentration of PNTs from 60.0 to 90.0 g/L. Commercially available enzyme preparations Cellolux-A and Bruzheim BGX are used for saccharification. Yeast strain VKPM Saccharomyces cerevisiae Y-1693 is used for fermentation. It is found that the concentration of bioethanol grows by 9.5 g/L upon raising the substrate concentration from 60.0 to 90.0 g/L. It is recommended that a substrate concentration of 90.0 g/L be used to scale up the process under trial industrial conditions. A basic scheme isproposed for producing bioethanol with a yield of bioethanol 202 L/t of miscanthus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Zabed, H., Sahu, J.N., Suely, A., Boyce, A.N., and Faruq, G., Energy Rev., 2017, vol. 71, pp. 475–501. https://doi.org/10.1016/j.rser.2016.12.076

    Article  CAS  Google Scholar 

  2. Saha, B.C., Nichols, N.N., Qureshi, N., Kennedy, G.J., Iten, L.B., and Cotta, M.A., Bioresour. Technol., 2015, vol. 175, pp. 17–22. https://doi.org/10.1016/j.biortech.2014.10.060

    Article  CAS  PubMed  Google Scholar 

  3. Haq, F., Ali, H., Shuaib, M., Badshah, M., Hassan, S.W., Munis, M.F.H., and Chaudhary, H.J., Int. J. Green Energy, 2016, vol. 13, no. 14, pp. 1413–1441.

    Article  CAS  Google Scholar 

  4. Niju, S. and Swathika, M., Biocatal. Agric. Biotechnol., 2019, vol. 20, article no. 101263. https://doi.org/10.1016/j.bcab.2019.101263

    Article  Google Scholar 

  5. Yeh, R.-H., Lin, Y.-S., Wang, T.-H., Kuan, and W.-C., Lee, W.-C., Biomass Bioenergy, 2016, vol. 94, pp. 110–116. https://doi.org/10.1016/j.biombioe.2016.08.009

    Article  CAS  Google Scholar 

  6. Boakye-Boaten, N.A., Xiu, S., Shahbazi, A., Wang, L., Li, R., Mims, M., and Schimmel, K., Bioresour. Technol., 2016, vol. 204, pp. 98–105. https://doi.org/10.1016/j.biortech.2015.12.070

    Article  CAS  PubMed  Google Scholar 

  7. Skiba, E.A., Budaeva, V.V., Baibakova, O.V., Udoratina, E.V., Shakhmatov, E.G., Shcherbakova, T.P., Kuchin, A.V., and Sakovich, G.V., Catal. Ind., 2016, vol. 8, no. 2, pp. 168–175. https://doi.org/10.1134/S2070050416020100

    Article  Google Scholar 

  8. Kang, K.E., Jeong, J.-S., Kim, Y., Min, J., and Moon, S.-K., J. Biosci. Bioeng., 2019, vol. 128, no. 4, pp. 475–479. https://doi.org/10.1016/j.jbiosc.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  9. Chenga, S., Yu, H., Hu, M., Wu, Y., Cheng, L., Cai, Q., Tu, Y., Xia, T., and Peng, L., Bioresour. Technol., 2018, vol. 263, pp. 67–74. https://doi.org/10.1016/j.biortech.2018.04.031

    Article  CAS  Google Scholar 

  10. Dubis, B., Bułkowska, K., Lewandowska, M., Szempliński, W., Jankowski, K.J., Idźkowski, J., Kordala, N., and Szymańska, K., Bioresour. Technol., 2017, vol. 243, pp. 731–737. https://doi.org/10.1016/j.biortech.2017.07.005

    Article  CAS  PubMed  Google Scholar 

  11. Smuga-Kogut, M., Piskier, T., Walendzik, B., and Szymanowska-Powałowska, D., Electron. J. Biotechnol., 2019, vol. 41, pp. 1–8. https://doi.org/10.1016/j.ejbt.2019.05.001

    Article  CAS  Google Scholar 

  12. Dorogina, O.V., Vasil’eva, O.Yu., Nuzhdina, N.S., Buglova, L.V., Gismatulina, Yu.A., Zhmud’, E.V., Zueva, G.A., Komina, O.V., and Tsybchenko, E.A., Vavilov.Zh. Genet. Sel., 2018, vol. 22, no. 5, pp. 553–559. https://doi.org/10.18699/VJ18.394

    Article  Google Scholar 

  13. Yang, F., Afzal, W., Cheng, K., Liu, N., Pauly, M., Bell, A.T., Liu, Z., and Prausnitz, J.M., Biotechnol. Bioprocess Eng., 2015, vol. 20, no. 2, pp. 304–314. https://doi.org/10.1007/s12257-014-0658-4

    Article  CAS  Google Scholar 

  14. Botella, C., Zhang, K., Baugh, A., Liang, Y., and Sivakumar, S.V., Biochem. Eng. J., 2019, vol. 150, article no. 107266. https://doi.org/10.1016/j.bej.2019.107266

    Article  CAS  Google Scholar 

  15. Bychkov, A., Podgorbunskikh, E., Bychkova, E., and Lomovsky, O., Biotechnol. Bioeng., 2019, vol. 116, no. 5, pp. 1231–1244. https://doi.org/10.1002/bit.26925

    Article  CAS  PubMed  Google Scholar 

  16. Bychkov, A.L., Podgorbunskikh, E.M., Ryabchikova, E.I., and Lomovsky, O.I., Cellulose, 2018, vol. 25, no. 1, pp. 1–5. https://doi.org/10.1007/s10570-017-1536-y

    Article  CAS  Google Scholar 

  17. Podgorbunskikh, E.M., Bychkov, A.L., Bulina, N.V., and Lomovskii, O.I., J. Struct. Chem., 2018, vol. 59, no. 1, pp. 201–208. https://doi.org/10.1134/S0022476618010328

    Article  CAS  Google Scholar 

  18. Podgorbunskikh, E.M., Bychkov, A.L., and Lomovskii, O.I., Catal. Ind., 2016, vol. 8, no. 3, pp. 274–279. https://doi.org/10.1134/S2070050416030090

    Article  Google Scholar 

  19. Huang, Y., Qin, X., Luo, X.-M., Nong, Q., Yang, Q., Zhang, Z., Gao, Y., Lu, F., Chen, Y., Yu, Z., Liu, J.-L., and Feng, J.-X., Biomass Bioenergy, 2015, vol. 77, pp. 53–63. https://doi.org/10.1016/j.biombioe.2015.03.020

    Article  CAS  Google Scholar 

  20. Banzaraktsaeva, S.P., Ovchinnikova, E.V., Danilova, I.G., Danilevich, V.V., and Chumachenko, V.A., Chem. Eng. J., 2019, vol. 374, pp. 605–618. https://doi.org/10.1016/j.cej.2019.05.149

    Article  CAS  Google Scholar 

  21. Skiba, E.A., Baibakova, O.V., Budaeva, V.V., Pavlov, I.N., Vasilishin, M.S., Makarova, E.I., Sakovich, G.V., Ovchinnikova, E.V., Banzaraktsaeva, S.P., Vernikov-skaya, N.V., and Chumachenko, V.A., Chem. Eng. J., 2017, vol. 329, pp. 178–186. https://doi.org/10.1016/j.cej.2017.05.182

    Article  CAS  Google Scholar 

  22. Unrean, P., Khajeeram, S., and Laoteng, K., Appl. Microbiol. Biotechnol., 2016, vol. 100, no. 5, pp. 2459–2470. https://doi.org/10.1007/s00253-015-7173-1

    Article  CAS  PubMed  Google Scholar 

  23. Althuri, A., Chintagunta, A.D., Sherpa, K.C., and Banerjee, R., in Biofuel and Biorefinery Technologies, vol. 4: Biorefining of Biomass to Biofuels, Kumar, S. and Sani, R., Eds., New York: Springer, 2018, pp. 265–285. https://doi.org/10.1007/978-3-319-67678-4_12

  24. Baibakova, O.V., Fundam. Issled., 2015, no. 2/13, pp. 2783–2786.

  25. Rodrigues, T.H.S., de Barros, E.M., de Sá Brígido, J., da Silva, W.M., Rocha, M.V.P., and Gonçalves, L.R.B., Appl. Biochem. Biotechnol., 2016, vol. 178, no. 6, pp. 1167–1183. https://doi.org/10.1007/s12010-015-1936-0

    Article  CAS  PubMed  Google Scholar 

  26. Phitsuwan, P., Permsriburasuk, C., Waeonukul, R., Pason, P., Tachaapaikoon, C., and Ratanakhanokchai, K., Biomass Bioenergy, 2016, vol. 93, pp. 150–157. https://doi.org/10.1016/j.biombioe.2016.07.012

    Article  CAS  Google Scholar 

  27. Agrawal, R., Bhadana, B., Mathur, A.S., Guptaimproved, R.P., and Satlewal, A., Front. Energy Res., 2018, vol. 6, p. 115. https://doi.org/10.3389/fenrg.2018.00115

    Article  Google Scholar 

  28. Sotaniemi, V.-H., Taskila, S., Ojamo, H., and Tanskanen, J., Biomass Bioenergy, 2016, vol. 91, pp. 271–277. https://doi.org/10.1016/j.biombioe.2016.05.037

    Article  CAS  Google Scholar 

  29. Kadhum, H.J., Mahapatra, D.M., and Murthy, G.S., Bioresour. Technol., 2019, vol. 283, pp. 67–75. https://doi.org/10.1016/j.biortech.2019.03.060

    Article  CAS  PubMed  Google Scholar 

  30. Potseluev, O.M. and Kapustyanchik, S.Yu., Vestn. Altai. Gos. Agrar. Univ., 2018, no. 10, pp. 55–60.

  31. Kurschner, K. and Hoffer, A., Fresenius’ J. Anal. Chem., 1993, vol. 92, no. 3, pp. 145–154.

    Article  Google Scholar 

  32. Obolenskaya, A.V., El’nitskaya, Z.P., and Leonovich, A.A., Laboratornye raboty po khimii drevesiny i tsellyulozy (Laboratory Works on Chemistry of Wood and Cellulose), Moscow: Ekologiya, 1991.

  33. TAPPI (TAPPI Standard) T222 om-02: Acid-Insoluble Lignin in Wood and Pulp, 2002.

  34. TAPPI (TAPPI Standard) T211 om-85: Ash in Wood, Pulp, Paper, and Paperboard, 1985.

  35. Pavlov, I.N., Catal. Ind., 2014, vol. 6, no. 4, pp. 355–360.

    Article  Google Scholar 

  36. Makarova, E.I., Budaeva, V.V., and Skiba, E.A., Russ. J. Bioorg. Chem., 2014, vol. 40, no. 7, pp. 726–732. https://doi.org/10.1134/S1068162014070103

    Article  CAS  Google Scholar 

  37. Skiba, E.A., Budaeva, V.V., Baibakova, O.V., Zolotukhin, V.N., and Sakovich, G.V., Biochem. Eng. J., 2017, vol. 126, pp. 118–125. https://doi.org/10.1016/j.bej.2016.09.003

    Article  CAS  Google Scholar 

  38. Nikitin, N.I., The Chemistry of Cellulose and Wood, New York: Davey, 1966.

    Google Scholar 

  39. Budaeva, V.V., Makarova, E.I., and Gismatulina, Y.A., in Key Engineering Materials, vol. 670: Multifunctional Chemical Materials and Technologies, Slizhov, Yu.G. and Kurzina, I. Eds., Stäfa–Zurich, Switzerland: Trans Tech Publications, 2016, pp. 202–206. https://doi.org/10.4028/www.scientific.net/KEM.670.202

  40. Denisova, M.N., Makarova, E.I., Pavlov, I.N., Budaeva, V.V., and Sakovich, G.V., Appl. Biochem. Biotechnol., 2016, vol. 178, no. 6, pp. 1196–1206. https://doi.org/10.1007/s12010-015-1938-y

    Article  CAS  PubMed  Google Scholar 

  41. Skiba, E.A. and Pavlov, I.N., Abstract of Papers, Materialy IX Vserossiiskoi nauchno-prakticheskoi konferentsii studentov, aspirantov i molodykh uchenykh s mezhdunarodnym uchastiem (Proc. IX All-Russian Scientific and Practical Conference of Students, Postgraduates, and Young Scientists with International Participation), Biisk, 2016, pp. 367–371.

  42. Baibakova, O.V., Izv. VUZov, Prikl. Khim. Biotekhnol., 2018, vol. 8, no. 3, pp. 79–84. https://doi.org/.org/10.21285/2227-2925-2018-8-3-79-84

Download references

Funding

This work was supported by the Siberian Branch of the Russian Academy of Sciences under its Complex Program for Basic Scientific Research II.1 “Interdisciplinary Integration Investigation,” project no. 0385-2018-0013.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. V. Baibakova, E. A. Skiba, V. V. Budaeva, Yu. A. Gismatulina or G. V. Sakovich.

Additional information

Translated by A. Bannov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baibakova, O.V., Skiba, E.A., Budaeva, V.V. et al. Producing Bioethanol from Miscanthus: Experience of Primary Scale-Up. Catal. Ind. 12, 155–161 (2020). https://doi.org/10.1134/S2070050420020038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050420020038

Keywords:

Navigation