Skip to main content
Log in

Thermostable Esterase estUT1 from Ureibacillus thermosphaericus: Effect of TrxA Tag on the Enzyme Properties

  • BIOCATALYSIS
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The thermostable esterase from the bacterium Ureibacillus thermosphaericus was expressed with Trx tag from plasmid pET32b-estUT1 under T7 promoter in E. coli BL21(DE3). The specific activity and relative thermal stability of the tagged enzyme increased from 45.2 to 65.8% (1 h at 70°С). The additional TrxA tag does not affect the pH optimum of enzyme activity and substrate specificity. At the same time, the absence of the TrxA tag resulted in a significant increase in the stability of estUT1 in during incubation with various chemicals, including ethanol and methanol. The maximum catalytic efficiency (kcat/KM) for esterase was observed in the absence of the TrxA tag and was 280.0 s−1 mM−1. Thereby fusion with TrxA tag promotes the enzyme secretion in the dissolved form, but reduces its thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. López-López, O., Cerdán, M.E., and González Siso, M.I., Curr. Protein Pept. Sci., 2014, vol. 15, no. 5, pp. 445–455.

    Article  Google Scholar 

  2. Piligaev, A.V., Sorokina, K.N., Samoylova, Y.V., and Parmon, V.N., Energy Convers. Manage., 2018, vol. 156, pp. 1–9.

    Article  CAS  Google Scholar 

  3. Robic, A., Ullmann, C., Auffray, P., Persillon, C., and Martin, J., OCL, 2017, vol. 24, no. 4, p. D404.

    Article  Google Scholar 

  4. Samoilova, Yu.V., Piligaev, A.V., Sorokina, K.N., Rozanov, A.S., Pel’tek, S.E., Novikov, A.A., Al’myasheva, N.R., and Parmon, V.N., Katal.Prom-sti, 2015, vol. 15, no. 6, pp. 90–96.

    CAS  Google Scholar 

  5. Samoylova, Y.V., Sorokina, K.N., Romanenko, M.V., and Parmon, V.N., Extremophiles, 2018, vol. 22, no. 2, pp. 271–285.

    Article  CAS  Google Scholar 

  6. Jaeger, K.-E. and Eggert, T., Curr. Opin. Biotechnol., 2002, vol. 13, no. 4, pp. 390–397.

    Article  CAS  Google Scholar 

  7. Haki, G.D. and Rakshit, S.K., Bioresour. Technol., 2003, vol. 89, no. 1, pp. 17–34.

    Article  CAS  Google Scholar 

  8. Sriyapai, P., Kawai, F., Siripoke, S., Chansiri, K., and Sriyapai, T., Int. J. Mol. Sci., 2015, vol. 16, no. 6, pp. 13579–13594.

    Article  CAS  Google Scholar 

  9. Kademi, A., Aït-Abdelkader, N., Fakhreddine, L., and Baratti, J.C., J. Mol. Catal. B: Enzym., 2000, vol. 10, no. 4, pp. 395–401.

    Article  CAS  Google Scholar 

  10. Li, H. and Zhang, X., Protein Expression Purif., 2005, vol. 42, no. 1, pp. 153–159.

    Article  Google Scholar 

  11. Kulkarni, N. and Gadre, R.V., J. Ind. Microbiol. Biotechnol., 2002, vol. 28, no. 6, pp. 344–348.

    Article  CAS  Google Scholar 

  12. Liu, L., Yang, H., Shin, H.D., Chen, R.R., Li, J., Du, G., and Chen, J., Bioengineered, 2013, vol. 4, no. 4, pp. 212–223.

    Article  Google Scholar 

  13. Samoylova, Y.V., Sorokina, K.N., Piligaev, A.V., and Parmon, V.N., Catalysts, 2018, vol. 8, no. 4, p. 154.

    Article  Google Scholar 

  14. Saïda, F., Uzan, M., Odaert, B., and Bontems, F., Curr. Protein Pept. Sci., 2006, vol. 7, no. 1, pp. 47–56.

    Article  Google Scholar 

  15. Lee, S., Kim, S.M., and Lee, R.T., Antioxid. Redox Signaling, 2013, vol. 18, no. 10, pp. 1165–1207.

    Article  CAS  Google Scholar 

  16. Su, E., Xu, J., and Wu, X., Biotechnol. Appl. Biochem., 2015, vol. 62, no. 1, pp. 79–86.

    Article  CAS  Google Scholar 

  17. Laemmli, U.K., Nature, 1970, vol. 227, no. 5259, pp. 680–685.

    Article  CAS  Google Scholar 

  18. Bradford, M.M., Anal. Biochem., 1976, vol. 72, nos. 1–2, pp. 248–254.

  19. Eom, G.T., Song, J.K., Ahn, J.H., Seo, Y.S., and Rhee, J.S., Appl. Environ. Microbiol., 2005, vol. 71, no. 7, pp. 3468–3474.

    Article  CAS  Google Scholar 

  20. Costa, S., Almeida, A., Castro, A., and Domingues, L., Front. Microbiol., 2014, vol. 5, pp. 63–63.

    PubMed  PubMed Central  Google Scholar 

  21. Bird, L.E., Methods, 2011, vol. 55, no. 1, pp. 29–37.

    Article  CAS  Google Scholar 

  22. Young, C.L., Britton, Z.T., and Robinson, A.S., Biotechnol. J., 2012, vol. 7, no. 5, pp. 620–634.

    Article  CAS  Google Scholar 

  23. Paraskevopoulou, V. and Falcone, F.H., Microorganisms, 2018, vol. 6, no. 2, p. 47.

    Article  Google Scholar 

  24. Alquéres, S.M.C., Branco, R.V., Freire, D.M.G., Alves, T.L.M., Martins, O.B., and Almeida, R.V., Enzyme Res., 2011, vol. 2011. https://doi.org/10.4061/2011/316939

Download references

Funding

This work is part of a State task for the Boreskov Institute of Catalysis, project no. AAAA-A17-117041710075-0 “Scientific Bases of the Catalytic and Biotechnological Processes of Conversion of Renewable Raw Materials for Chemistry and Energy.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. N. Sorokina, Yu. V. Samoylova or V. N. Parmon.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokina, K.N., Samoylova, Y.V. & Parmon, V.N. Thermostable Esterase estUT1 from Ureibacillus thermosphaericus: Effect of TrxA Tag on the Enzyme Properties. Catal. Ind. 12, 148–154 (2020). https://doi.org/10.1134/S2070050420020099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050420020099

Keywords:

Navigation