Skip to main content
Log in

The Role of Linker Histones in Chromatin Structural Organization. 2. Interaction with DNA and Nuclear Proteins

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—In the first part of this review (Biophysics, 63, 858 (2018)), the structure of H1 family linker histones, their posttranslational modifications, as well as the role of H1 histone in the formation of compact transcriptionally inactive chromatin, were considered. The second part is devoted to the role of H1 family linker histones in the structural organization of chromatin at different levels: from nucleosomes to metaphase chromosomes. The mechanisms of interaction of H1 histone with other elements of chromatin, including with DNA and nuclear proteins, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. E. White, A. R. Hieb, and K. Luger, Sci. Rep. 6, 19122 (2016).

    ADS  Google Scholar 

  2. C. L. Woodcock and R. P. Ghosh, Cold Spring Harb. Perspect. Biol. 2 (5), a000296 (2010).

    Google Scholar 

  3. K. Luger, M. L. Dechassa, and D. J. Tremethick, Nat. Rev. Mol. Cell Biol. 13, 436 (2012).

    Google Scholar 

  4. T. L. Caterino and J. J. Hayes, Biochem. Cell Biol. 89, 35 (2011).

    Google Scholar 

  5. E. Chikhirzhina, G. Chikhirzhina, and A. Polyanichko, Biomed. Spectr. Imag. 3, 345 (2014).

    Google Scholar 

  6. E. V. Chikhirzhina and V. I. Vorob’ev, Tsitologiya 44, 721 (2002).

    Google Scholar 

  7. S. A. Grigoryev, G. Arya, S. Correll, et al., Proc. Natl. Acad. Sci. U. S. A. 106, 13317 (2009).

    ADS  Google Scholar 

  8. A. Kalashnikova, M. Porter-Goff, U. Muthurajan, et al., J. Roy. Soc. Interface 10, 20121022 (2013).

    Google Scholar 

  9. J. Ausio, Bioessays 37, 46 (2015).

    Google Scholar 

  10. A. Sadakierska-Chudy and M. Filip, Neurotox. Res. 27, 172 (2015).

    Google Scholar 

  11. A. V. Ilatovskii, D. V. Lebedev, M. V. Filatov, et al., Tsitologiya 54 (4), 298 (2012)

    Google Scholar 

  12. A. L. Olins and D. E. Olins, Science 184, 868 (1974).

    Google Scholar 

  13. H. Schiessel, J. Widom, R. F. Bruinsma, et al., Phys. Rev. Lett. 86, 4414 (2001).

    ADS  Google Scholar 

  14. A. M. Polyanichko and E. V. Chikhirzhina, J. Mol. Struct. 1044, 167 (2013).

    ADS  Google Scholar 

  15. K. Luger, A. W. Mader, R. K. Richmond, et al., Nature 389, 251 (1997).

    ADS  Google Scholar 

  16. R. K. Suto, R. S. Edayathumangalam, C. L. White, et al., J. Mol. Biol. 326, 371 (2003).

    Google Scholar 

  17. T. Schalch, S. Duda, D. F. Sargent, et al., Nature 436, 138 (2005).

    ADS  Google Scholar 

  18. A. Klug, Annu. Rev. Biochem. 79, 1 (2010).

    Google Scholar 

  19. A. Polyanichko and H. Wieser, Biopolymers 78, 329 (2005).

    Google Scholar 

  20. A. Polyanichko, E. Chikhirzhina, V. Andruschchenko, et al., Biopolymers 83, 182 (2006).

    Google Scholar 

  21. A. Polyanichko and H. Wieser, in Methods in Protein Structure and Stability Analysis: Vibrational Spectroscopy, ed. by E. Permyakov and V. Uversky (Nova Science Publ., New York, 2007), pp. 267–302.

    Google Scholar 

  22. A. Polyanichko and E. Chikhirzhina, Spectroscopy 27, 393 (2012).

    Google Scholar 

  23. A. M. Polyanichko, V. V. Andrushchenko, P. Bour, et al., Circular Dichroism: Theory and Spectroscopy, ed. by D. S. Rodgers (Nova Science Publ., New York, 2012), pp. 67–126.

    Google Scholar 

  24. A. M. Polyanichko, V. I. Vorob’ev, and E. V. Chikhirzhina, Mol. Biol. (Moscow) 47 (2), 412 (2013).

    Google Scholar 

  25. J. Zlatanova and J. Yaneva, DNA Cell Biol. 10, 239 (1991).

    Google Scholar 

  26. E. V. Chikhirzhina, T. Yu. Starkova, E. I. Kostyleva, et al., Tsitologiya 53 (10), 826 (2011).

    Google Scholar 

  27. E. I. Ramm, E. V. Chikhirzhina, E. I. Kostyleva, et al., Biokhimiya 60 (1), 150 (1995).

    Google Scholar 

  28. E. V. CHikhirzhina, E. I. Kostyleva, E. I. Ramm et al., Tsitologiya 40 (10), 883 (1998).

  29. A. M. Polyanichko, S. G. Davydenko, E. V. Chikhirzhina, et al., Tsitologiya 42 (8), 787 (2000).

    Google Scholar 

  30. E. V. Chikhirzhina, A. M. Polyanichko, A. N. Skvortsov, et al., Mol. Biol. (Moscow) 36 (3), 525 (2002).

    Google Scholar 

  31. A. M. Polyanichko, E. V. Chikhirzhina, A. N. Skvortsov, et al., J. Biomol. Struct. Dyn. 19, 1053 (2002).

    Google Scholar 

  32. E. Chikhirzhina, T. Starkova, E. Kostyleva, et al., Spectroscopy: Int. J. 27, 433 (2012).

    Google Scholar 

  33. E. V. Chikhirzhina, A. M. Polyanichko, E. I. Kostyleva, et al., Mol. Biol. (Moscow) 45 (2), 318 (2011).

    Google Scholar 

  34. A. V. Fonin, O. V. Stepanenko, K. K. Turoverov, et al., Tsitologiya 52 (11), 946 (2010).

    Google Scholar 

  35. A. Fonin, O. V. Stepanenko, I. M. Kuznetsova, et al., Spectroscopy 24, 165 (2010).

    Google Scholar 

  36. E. Chikhirzhina, T. Starkova, and A. Polyanichko, Biophysics (Moscow) 63 (6), 858 (2018).

    Google Scholar 

  37. J. B. Baldwin, P. G. Boseley, E. M. Bradbury, et al., Nature 253, 245 (1975).

    ADS  Google Scholar 

  38. R. D. Kornberg, Science 184, 868 (1974).

    ADS  Google Scholar 

  39. C. L. Peterson and M. A. Laniel, Curr. Biol. 14, R546 (2004).

    Google Scholar 

  40. C. A. Davey, D. F. Sargent, K. Luger, et al., J. Mol. Bio-l. 319, 1097 (2002).

    Google Scholar 

  41. S. Bilokapic, M. Strause, and M. Halic, Nat. Struct. Mol. Biol. 25, 101 (2018).

    Google Scholar 

  42. S. Bilokapic, M. Strause, and M. Halic, Nat. Commun. 9, 1330 (2018).

    ADS  Google Scholar 

  43. S. Bilokapic, M. Strauss, and M. Halic, Sci. Rep. 8, 7046 (2018).

    ADS  Google Scholar 

  44. G. Arents, R. W. Burlingame, B. C. Wang, et al., Proc. Natl. Acad. Sci. U. S. A. 88, 10148 (1991).

    ADS  Google Scholar 

  45. J. M. Harp, B. L. Hanson, D. E. Timm, et al., Acta Cryst. D: Biol. Cryst. 56, 1513 (2000).

    Google Scholar 

  46. C. M. Wood, J. M. Nicholson, S. J. Lambert, et al., Acta Cryst. F: Struct. Biol. Cryst. Comm. 61, 541 (2005).

    Google Scholar 

  47. A. Jerzmanowski, in Chromatin Struture and Dynamics: State-of-the-Art, Ed. by J. Zlatanova and S. H. Leuba (Elsevier, London, 2004), pp. 75–102.

    Google Scholar 

  48. B. Sarg, W. Helliger, H. Talasz, et al., J. Biol. Chem. 281, 6573 (2006).

    Google Scholar 

  49. A. Kowalski and J. Palyga, Cell Biol. Int. 36, 981 (2012).

    Google Scholar 

  50. J. Ocampo, F. Cui, V. B. Zhurkin, and D. J. Clark, Nucleus 7, 382 (2016).

    Google Scholar 

  51. X. Lu and J. C. Hansen, J. Biol. Chem. 279, 8701 (2004).

    Google Scholar 

  52. C. Crane-Robinson, Biochim. Biophys. Acta 1859, 431 (2016).

    Google Scholar 

  53. D. J. Tremethick, Cell 128, 651 (2007).

    Google Scholar 

  54. G. Li and D. Reinberg, Curr. Opin. Genet. Dev. 21, 175 (2011).

    Google Scholar 

  55. D. Angelov, J. Vitolo, V. Mutskov, et al., Proc. Natl. Acad. Sci. U. S. A. 98, 6599 (2001).

    ADS  Google Scholar 

  56. B. R. Zhou, J. Jiang, H. Feng, et al., Mol. Cell 59, 628 (2015).

    Google Scholar 

  57. B. R. Zhou, H. Feng, R. Ghirlando, et al., J. Mol. Biol. 428, 3948 (2016).

    Google Scholar 

  58. J. Bednar, I. Garcia-Saez, R. Boopathi, et al., Mol. Cell, 66, 384 (2017).

    Google Scholar 

  59. K. Maeshima, R. Imai, T. Hikima, et al., Methods 70, 154 (2014).

    Google Scholar 

  60. A. A. Kalashnikova, D. D. Winkler, S. J. McBryant, et al., Nucleic Acids Res. 41, 4026 (2013).

    Google Scholar 

  61. P. Zhu and G. Li, IUBMB Life 68, 873 (2016).

    Google Scholar 

  62. D. V. Fyodorov, B. R. Zhou, A. I. Skoultchi, et al., Nat. Rev. Mol. Cell Biol. 19, 192 (2018).

    Google Scholar 

  63. P. J. Robinson and D. Rhodes, Curr. Opin. Struct. Biol. 16, 336 (2006).

    Google Scholar 

  64. P. J. Robinson, L. Fairall, A. T. Van Huynh, et al., Proc. Natl. Acad. Sci. U. S. A. 103, 6506 (2006).

    ADS  Google Scholar 

  65. V. Andrushchenko, J. H. van de Sande, and H. Wieser, Biopolymers 72, 374 (2003).

    Google Scholar 

  66. A. Polyanichko and E. Chikhirzhina, Adv. Biomed. Spectrosc. 7, 185 (2013).

    Google Scholar 

  67. E. Chikhirzhina, T. Starkova, E. Kostyleva et al., Adv. Biomed. Spectrosc. 7, 177 (2013).

    Google Scholar 

  68. T. Maniatis, J. H. Venable, Jr., and L. S. Lerman, J. Mol. Biol. 84, 37 (1974).

    Google Scholar 

  69. A. L. Turner, M. Watson, O. G. Wilkins, et al., Proc. Natl. Acad. Sci. U. S. A., 115 (47), 11964 (2018).

    Google Scholar 

  70. F. Totsingan and A. J. Bell, Jr., Prot. Sci. 22, 1552 (2013).

    Google Scholar 

  71. J. Zlatanova and K. van Holde, BioEssays 20, 584 (1998).

    Google Scholar 

  72. J. N. Yaneva, E. G. Paneva, S. I. Zacharieva et al., Z. Naturforsch. C 61, 879 (2006).

    Google Scholar 

  73. J. N. Yaneva, E. G. Paneva, S. I. Zacharieva et al., Z. Naturforsch. C 62, 905 (2007).

    Google Scholar 

  74. K. P. Nightingale, D. Pruss, and A. P. Wolffe, J. Biol. Chem. 271, 7090 (1996).

    Google Scholar 

  75. X. Lu and J. C. Hansen, Biochem. Cell Biol. 81, 173 (2003).

    Google Scholar 

  76. X. Lu, B. Hamkalo, M. H. Parseghian, et al., Biochemistry 48, 164 (2009).

    Google Scholar 

  77. A. A. Kalashnikova, R. A. Rogge, and J. C. Hansen, Biochim. Biophys. Acta 1859, 455 (2016).

    Google Scholar 

  78. A. Roque, I. Ponte, and P. Suau, Chromosoma 126, 83 (2017).

    Google Scholar 

  79. A. Roque, I. Ponte, and P. Suau, Biochim. Biophys. Acta 1859, 444 (2016).

    Google Scholar 

  80. A. Roque, I. Ponte, J. L. Arrondo, et al., Nucleic Acids Res. 36, 4719 (2008).

    Google Scholar 

  81. H. E. Kasinsky, J. D. Lewis, J. B. Dacks, et al., FASEB J. 15, 34 (2001).

    Google Scholar 

  82. J. C. Hansen, X. Lu, E. D. Ross, et al., J. Biol. Chem. 281, 1853 (2006).

    Google Scholar 

  83. J. Allan, D. Ram, N. Harborne, et al., J. Cell. Biol. 98, 1320 (1984).

    Google Scholar 

  84. B. R. Zhou, H. Feng, H. Kato, et al., Proc. Natl. Acad. Sci. U. S. A. 110, 19390 (2013).

    ADS  Google Scholar 

  85. M. J. Hendzel, M. A. Lever, E. Crawford, et al., J. Biol. Chem. 279, 20028 (2004).

    Google Scholar 

  86. N. Raghuram, G. Carrero, J. Th’ng, et al., Biochem. Cell Biol. 87, 189 (2009).

    Google Scholar 

  87. J. P. Th’ng, R. Sung, M. Ye, et al., J. Biol. Chem. 280, 27809 (2005).

    Google Scholar 

  88. H. Fang, D. J. Clark, and J. J. Hayes, Nucleic Acids Res. 40, 1475 (2012).

    Google Scholar 

  89. J. Allan, P. G. Hartman, C. Crane-Robinson, et al., Nature 288, 675 (1980).

    ADS  Google Scholar 

  90. Y. Zhou, S. Gershman, V. Ramakrishnan, et al., Nature 395, 402 (1998).

    ADS  Google Scholar 

  91. S. Lambert, S. Muyldermans, J. Baldwin, et al., Biochem. Biophys. Res. Commun. 179, 810 (1991).

    Google Scholar 

  92. J. Hayes, Biochemistry 35, 11931 (1996).

    Google Scholar 

  93. D. Pruss, B. Bartholomew, J. Persinger, et al., Science 274, 614 (1996).

    ADS  Google Scholar 

  94. D. T. Brown, T. Izard, and T. Misteli, Nat. Struct. Mol. Biol. 13, 250 (2006).

    Google Scholar 

  95. L. Fan and V. A. Roberts, Proc. Natl. Acad. Sci. U. S. A. 103, 8384 (2006).

    ADS  Google Scholar 

  96. S. J. McBryant, X. Lu, and J. C. Hansen, Cell Res. 20, 519 (2010).

    Google Scholar 

  97. J.-Q. Ni, L.-P. Liu, D. Hess, et al., Genes Dev. 20, 1959 (2006).

    Google Scholar 

  98. H. J. Szerlong, J. A. Herman, C. M. Krause et al., J. Mol. Biol. 427, 2056 (2015).

    Google Scholar 

  99. J. Zlatanova, Trends Biochem. Sci. 15, 273 (1990).

    Google Scholar 

  100. H. Lee, R. Habas, and C. Abate-Shen, Science 304, 1675 (2004).

    ADS  Google Scholar 

  101. P. J. Laybourn and J. T. Kadonaga, Science 254, 238 (1991).

    ADS  Google Scholar 

  102. Q. Lin, A. Inselman, X. Han, et al., J. Biol. Chem. 279, 23525 (2004).

    Google Scholar 

  103. Y. Zheng, S. John, J. J. Pesavento, et al., J. Cell Biol. 189, 407 (2010).

    Google Scholar 

  104. S. Yang, B. J. Kim, L. N. Toro, et al., Proc. Natl. Acad. Sci. U. S. A. 110, 1708 (2013).

    ADS  Google Scholar 

  105. Y. V. Postnikov, L. Trieschmann, A. Rickers, et al., J. Mol. Biol. 252, 423 (1995).

    Google Scholar 

  106. Y. Postnikov and M. Bustin, Biochim. Biophys. Acta 1799, 62 (2010).

    Google Scholar 

  107. H. Kato, H. van Ingen, B. R. Zhou, et al., Proc. Natl. Acad. Sci. U. S. A. 108, 12283 (2011).

    ADS  Google Scholar 

  108. R. D. Phair, P. Scaffidi, C. Elbi, et al., Mol. Cell. Biol. 24, 6393 (2004).

    Google Scholar 

  109. Y. V. Postnikov, V. V. Shick, A. V. Belyavsky, et al., Nucleic Acids Res. 19, 717 (1991).

    Google Scholar 

  110. T. Deng, Z. I. Zhu, S. Zhang, et al., Mol. Cell. Biol. 33, 3377 (2013).

    Google Scholar 

  111. H. F. Ding, M. Bustin, and U. Hansen, Mol. Cell. Biol. 17, 5843(1997).

    Google Scholar 

  112. K. J. Murphy, A. R. Cutter, H. Fang, et al., Nucleic Acids Res. 45, 9917 (2017).

    Google Scholar 

  113. M. Stros, Biochim. Biophys. Acta 1799, 101 (2010).

    Google Scholar 

  114. M. Stros, E. Polanska, M. Kucirek, et al., PLoS One 10, e0138774 (2015).

    Google Scholar 

  115. R. Reeves, DNA Repair 36, 122 (2015).

    Google Scholar 

  116. F. A. Atcha, A. Syed, B. Wu, et al., Mol Cell Biol. 27, 8352 (2007).

    Google Scholar 

  117. L. H. Pevny and S. K. Nicolis, Int. J. Biochem. Cell Biol. 42, 421 (2010).

    Google Scholar 

  118. P. Bernard and V. R. Harley, Int. J. Biochem. Cell Biol. 42, 400 (2010).

    Google Scholar 

  119. F. Oppel, N. Muller, G. Schackert, et al., Mol Cancer. 10, 137(2011).

    Google Scholar 

  120. O. Leis, A. Eguiara, E. Lopez-Arribillaga, et al., Oncogene 31, 1354 (2012).

    Google Scholar 

  121. T. Chi, Nat. Rev. Immunol. 4, 965 (2004).

    Google Scholar 

  122. M. Stros, D. Launholt, and K. D. Grasser, Cell. Mol. Life Sci. 64, 2590 (2007).

    Google Scholar 

  123. D. Lai, M. Wan, J. Wu, et al., Proc. Natl. Acad. Sci. U. S. A. 106, 1169 (2009).

    ADS  Google Scholar 

  124. R. Catena, E. Escoffier, C. Caron, et al., Biol. Reprod. 80, 358 (2009).

    Google Scholar 

  125. S. Park and S. J. Lippard, Biochemistry 51, 6728 (2012).

    Google Scholar 

  126. G. J. Sullivan and B. McStay, Nucleic Acids Res. 26, 3555 (1998).

    Google Scholar 

  127. V. Ramakrishnan, Annu. Rev. Biophys. Biomol. Struct. 26, 83 (1997).

    Google Scholar 

  128. Y. V. Postnikov and M. Bustin, Biochim. Biophys. Acta 1859, 462 (2016).

    Google Scholar 

  129. A. M. Polyanichko, Z. V. Leonenko, D. Kramb, et al., Biophysics (Moscow) 53 (3), 202 (2008).

    Google Scholar 

  130. L. Cato, K. Stott, M. Watson, et al., Mol. Biol. 384, 1262 (2008).

    Google Scholar 

  131. A. Polyanichko and H. Wieser, Spectroscopy 24, 239 (2010).

    Google Scholar 

  132. L. A. Kohlstaedt, E. C. Sung, A. Fujishige, et al., J. Biol. Chem. 262, 524 (1987).

    Google Scholar 

  133. L. A. Kohlstaedt and R. D. Cole, Biochemistry 33, 570 (1994).

    Google Scholar 

  134. A. M. Polyanichko, B. A. Dribinskii, I. B. Kipenko, et al., Strukt. Dinam. Mol. Sistem 8A, 3 (2010).

    Google Scholar 

  135. E. Polanska, S. Pospisilova, and M. Stros, PLoS One 9, e89070 (2014).

    ADS  Google Scholar 

  136. P. Widlak, M. Kalinowska, M. H. Parseghian, et al., Biochemistry 44, 7871 (2005).

    Google Scholar 

  137. S. W. Harshman, N. L.Young, M. R. Parthun, et al., Nucleic Acids Res. 41, 9593 (2013).

    Google Scholar 

  138. E. Cheung, A. S. Zarifyan, and W. L. Kraus, Mol. Cell. Biol. 22, 2463 (2002).

    Google Scholar 

  139. R. D. Phair and T. Misteli, Nature 404, 604 (2000).

    ADS  Google Scholar 

  140. M. Harrer, H. Luhrs, M. Bustin, et al., J. Cell Sci. 117, 3459 (2004).

    Google Scholar 

  141. F. Catez, H. Yang, K. J. Tracey, et al., Mol. Cell. Biol. 24, 4321 (2004).

    Google Scholar 

  142. A. Allahverdi, R. Yang, N. Korolev, et al., Nucleic Acids Res. 39, 1680 (2011).

    Google Scholar 

  143. P. Trojer, J. Zhang, M. Yonezawa, et al., J. Biol. Chem. 284, 8395 (2009).

    Google Scholar 

  144. T. K. Hale, A. Contreras, A. J. Morrison, et al., Mol. Cell 22, 693 (2006).

    Google Scholar 

  145. M. Brehove, T. Wang, J. North, et al., J. Biol. Chem. 290, 22612 (2015).

    Google Scholar 

  146. R. Morra, T. Fessl, Y. Wang, et al., Methods Mol. Biol. 1431, 175 (2016).

    Google Scholar 

  147. I. H. McColl, E. W. Blanch, A. C. Gill, et al., J. Am. Chem. Soc. 125, 10019 (2003).

    Google Scholar 

  148. F. Zhu, N. W. Isaacs, L. Hecht, et al., Structure 13, 1409 (2005).

    Google Scholar 

  149. L. D. Barron, Biomed. Spectr. Imag. 4, 223 (2015).

    Google Scholar 

  150. M. L. Mello and B. C. Vidal, PLoS One 7, e43169 (2012).

    ADS  Google Scholar 

  151. H. B. Stuhrmann, Acta Crystallogr. A 64, 181 (2008).

    ADS  Google Scholar 

  152. Y. Joti, T. Hikima, Y. Nishino, et al., Nucleus 3, 404 (2012).

    Google Scholar 

  153. I. Garcia-Saez, H. Menoni, R. Boopathi, et al., Mol. Cell 72, 1 (2018).

    Google Scholar 

  154. M. A. Ozturk, V. Cojocaru, and R. C. Wade, Structure 26, 1 (2018).

    Google Scholar 

  155. M. A. Ozturk, V. Cojocaru, and R. C. Wade, Biophys. J. 114, 2363 (2018).

    ADS  Google Scholar 

  156. B. R. Zhou, J. Jiang, R. Ghirlando, et al., J. Mol. Biol. 430, 3093 (2018).

    Google Scholar 

  157. M. A. Ozturk, G. V. Pachov, R. C. Wade, et al., Nucleic Acids Res. 44, 6599 (2016).

    Google Scholar 

  158. J. C. Hansen, Ann. Rev. Biophys. Biomol. Struct. 31, 361 (2002).

    Google Scholar 

  159. F. Song, P. Chen, D. Sun, et al., Science 344, 376 (2014).

    ADS  Google Scholar 

  160. C. L. Woodcock, J. Cell Biol. 125, 11 (1994).

    Google Scholar 

  161. C. Kizilyaprak, D. Spehner, D. Devys, et al., PLoS One 5, e11039 (2010).

    ADS  Google Scholar 

  162. M. P. Scheffer, M. Eltsov, and A. S. Frangakis, Proc. Natl. Acad. Sci. U. S. A. 108, 16992 (2011).

    ADS  Google Scholar 

  163. M. Eltsov, K. M. Maclellan, K. Maeshima et al., Proc. Natl. Acad. Sci. U. S. A. 105, 19732 (2008).

    ADS  Google Scholar 

  164. E. Fussner, M. Strauss, U. Djuric, et al., EMBO Rep. 13, 992 (2012).

    Google Scholar 

  165. H. D. Ou, S. Phan, T. J. Deerinck, et al., Science 357, pii: eaag0025 (2017).

    Google Scholar 

  166. T. Nozaki, R. Imai, M. Tanbo, et al., Mol. Cell 67, 282 (2017).

    Google Scholar 

  167. M. A. Ricci, C. Manzo, M. F. Garcı’a-Parajo, et al., Cell 160, 1145 (2015).

    Google Scholar 

  168. K. Maeshima, R. Rogge, S. Tamura, et al., EMBO J. 35, 1115 (2016).

    Google Scholar 

  169. K. Maeshima, R. Imai, S. Tamura, et al., Chromosoma 123, 225 (2014).

    Google Scholar 

  170. S. A. Grigoryev, G. Bascom, J. M. Buckwalter, et al., Proc. Natl. Acad. Sci. U. S. A. 113, 1238 (2016).

    ADS  Google Scholar 

  171. W. Li, P. Chen, J. Yu, et al., Mol Cell 64, 120 (2016).

    Google Scholar 

  172. A. Bancaud, S. Huet, N. Daigle, et al., EMBO J. 28, 3785 (2009).

    Google Scholar 

  173. A. Routh, S. Sandin, and D. Rhodes, Proc. Natl. Acad. Sci. U. S. A. 105, 8872 (2008).

    ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 18-08-01500 (structural studies of DNA–protein interactions) and grant no. 18-04-01199 (studying the role of nuclear proteins HMGB1/2, H1 in the structural organization of chromatin).

Author information

Authors and Affiliations

Authors

Contributions

All of the authors made equal contributions to preparing this manuscript.

Corresponding authors

Correspondence to E. V. Chikhirzhina or A. M. Polyanichko.

Ethics declarations

The authors declare that they have no conflict of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chikhirzhina, E.V., Starkova, T.Y. & Polyanichko, A.M. The Role of Linker Histones in Chromatin Structural Organization. 2. Interaction with DNA and Nuclear Proteins. BIOPHYSICS 65, 202–212 (2020). https://doi.org/10.1134/S0006350920020049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920020049

Navigation