Skip to main content
Log in

The Protective Effect of a Chimeric PSH Antioxidant Enzyme in Renal Ischemia–Reperfusion Injury

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—A rapid increase in the concentration of free radicals and reactive oxygen species at the reperfusion stage is the most dangerous stage of ischemia–reperfusion injury. An avalanche-like increase in the level of reactive oxygen species and secondary products of free radical oxidation of biological macromolecules leads to the development of oxidative stress. The use of exogenous antioxidants can reduce the concentration of reactive oxygen species in the affected tissues and suppress or correct the course of oxidative stress; thus, it significantly reduces the severity of ischemia–reperfusion injury. Acute ischemic renal failure is one of the most important social problems in a comprehensive list of pathologies associated with ischemia–reperfusion. The nephroprotective effect of a chimeric PSH antioxidant enzyme that includes human peroxiredoxin 6 and Mn-containing superoxide dismutase of Escherichia coli has been shown on an animal model of bilateral ischemia–reperfusion renal injury. The recombinant chimeric PSH protein was able to neutralize a maximally possible wide range of reactive oxygen species due to the superoxide dismutase and peroxidase activities. It has been shown with histological, biochemical, and molecular biological methods that the preliminary administration of the chimeric PSH protein before ischemia–reperfusion significantly reduced the degree of renal tissue injury and led to a quick normalization of their structural and functional state. In addition, the administration of the PSH enzyme increased the survival of experimental animals by a factor of more than 1.5. The use of the recombinant chimeric PSH enzyme can be an effective approach in the prevention and treatment of renal ischemia–reperfusion injury, as well as for maintaining an isolated kidney during transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. Cadenas, Free Radic. Biol. Med. 117 (11), 76 (2017).

    Article  Google Scholar 

  2. S. Uchino, J. A. Kellum, R. Bellomo, et al., J. Am. Med. Assoc. 294 (7), 813 (2005).

    Article  Google Scholar 

  3. D. N. Granger and P. R. Kvietys, Redox Biol. 6, 524 (2015).

    Article  Google Scholar 

  4. E. Y. Plotnikov, A. V. Kazachenko, M. Y. Vyssokikh, et al., Kidney Int. 72 (12), 1493 (2007).

    Article  Google Scholar 

  5. Y. E. Yoon, K. S. Lee, K. H. Choo, et al., PLoS One 10 (4), 1 (2015).

    Google Scholar 

  6. I. V. Zarubina, A. V. Goryainov, P. D. Shabanov, Obzory Klin. Farmakol. Lekarstv. Terap. 8 (2), 3 (2010).

    Google Scholar 

  7. M. Scortegagna, K. Ding, Y. Oktay, et al., Nature Genetics 35 (4), 331 (2003).

    Article  Google Scholar 

  8. P. P. Kapitsinou and V. H. Haase, Am. J. Physiol. Renal Physiol. 309 (10), 821 (2015).

    Article  Google Scholar 

  9. E. B. Men’shchikova, V. Z. Lankin, N. K. Zenkov et al., Oxidative Stress: Prooxidants and Antioxidants (Slovo, Moscow, 2006) [in Russian].

    Google Scholar 

  10. V. I. Novoselov, V. K. Ravin, M. G. Sharapov, et al., Biophysics (Moscow) 56 (5), 836 (2011).

    Article  Google Scholar 

  11. A. G. Volkova, M. G. Sharapov, V. K. Ravin, et al., Russ. Pulmonol. 6 (2), 84 (2017).

    Google Scholar 

  12. A. E. Gordeeva, A. A. Temnov, A. A. Charnagalov, et al., Digestive Dis. Sci. 60 (12), 3610 (2015).

    Article  Google Scholar 

  13. R. G. Goncharov, K. A. Rogov, A. A. Temnov, et al., Cell Tissue Res. 378 (2), 319 (2019).

    Article  Google Scholar 

  14. M. G. Sharapov, V. I. Novoselov, E. E. Fesenko, et al., Free Radic. Res. 51 (2), 148 (2017).

    Article  Google Scholar 

  15. M. G. Sharapov, V. I. Novoselov, and S. V. Gudkov, Antioxidants 8 (1), 15 (2019).

    Article  Google Scholar 

  16. Y. Manevich, T. Shuvaeva, C. Dodia, et al., Arch. Biochem. Biophys. 485 (2), 139 (2009).

    Article  Google Scholar 

  17. I. V. Peshenko and H. Shichi, Free Radic. Biol. Med. 31 (3), 292 (2001).

    Article  Google Scholar 

  18. M. G. Sharapov, V. I. Novoselov, and V. K. Ravin, Biochemistry 81, 420 (2016).

    Google Scholar 

  19. M. G. Sharapov, V. I. Novoselov, and V. K. Ravin, Mol. Biol. (Moscow) 43 (3), 465 (2009).

    Article  Google Scholar 

  20. Q. Wei and Z. Dong, Am. J. Physiol. Renal Physiol. 303 (11), 1487 (2012).

    Article  Google Scholar 

  21. S. Kuure, Kidney Dev. 886, 147 (2012).

    Article  Google Scholar 

  22. M. G. Sharapov, V. I. Novoselov, N. V. Penkov, et al., Free Radic. Biol. Med. 134, 76 (2019).

    Article  Google Scholar 

  23. T. D. Schmittgen and K. J. Livak, Nature Protoc. 3 (6), 1101 (2008).

    Article  Google Scholar 

  24. P. Williams, H. Lopez, D. Britt, et al., J. Pharmacol. Toxicol. Methods 37 (1), 1 (1997).

    Article  Google Scholar 

  25. S. Gowda, P. B. Desai, S. S. Kullkarni, et al., North Am. J. Med. Sci. 2 (4), 170 (210).

  26. E. E. Hesketh, A. Czopek, and M. Clay, Visual. Exp. J., 15 (88), 1 (2014).

    Google Scholar 

  27. T. M. Yu, K. Palanisamy, K. T. Sun, et al., Sci. Rep. 6 (7), 1 (2015).

    Google Scholar 

  28. J. V. Bonventre, Trans. Am. Clin. Climatol. Ass. 125, 293 (2014).

    Google Scholar 

  29. E. B. Menshchikova, V. O. Tkachev, and N. K. Zenkov, Mol. Biol. (Moscow) 44 (3), 343 (2010).

    Article  Google Scholar 

  30. M. A. Aminzadeh, S. B. Nicholas, and K. C. Norris, Nephrol. Dialysis Transpl. 28 (8), 2038 (2013).

    Article  Google Scholar 

  31. B. Pires, R. Silva, G. Ferreira, et al., Genes 9 (1), 24 (2018).

    Article  Google Scholar 

  32. Y. Yamamoto, M. J. Yin, and R. B. Gaynor, J. Biol. Chem. 274 (38), 27307 (1999).

    Article  Google Scholar 

  33. J. Scheller, A. Chalaris, D. Schmidt-Arras, et al., Biochim. Biophys. Acta 1813 (5), 878 (2011).

    Article  Google Scholar 

  34. E. G. Shesely, N. Maeda, H. S. Kim, et al., Proc. Natl. Acad. Sci. U. S. A. 93 (97), 13176 (1996).

    Article  ADS  Google Scholar 

  35. T. Ishimura, F. Fujisawa, S. Isotani, et al., Transplant. Int. 15, 635 (2002).

    Article  Google Scholar 

  36. T. Wang, X. Zhang, and J. J. Li, Immunopharmacol. Int. 2 (11), 1509 (2002).

    Article  Google Scholar 

  37. M. G. Sharapov, V. K. Ravin, and V. I. Novoselov, Mol. Biol. (Moscow) 48 (4), 600 (2014).

    Article  Google Scholar 

  38. E. V. Karaduleva, E. K. Mubarakshina, M. G. Sharapov, et al., Byull. Eksp. Biol. Med. 160 (11), 584 (2015).

    Google Scholar 

  39. A. V. Maksimenko and A. V. Vavaev, Heart Int. 7 (3), 14 (2012).

    Article  Google Scholar 

  40. European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (European Treaty Series, No. 123, 1986).

Download references

Funding

The work was carried out with the financial support of The Russian Foundation for Basic Research, project nos. 17-04-00356-a and 19-04-00080-a; and the of the RAS Presidium Program Molecular and cellular biology and postgenomic technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Sharapov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare no conflict of interest.

COMPLIANCE WITH ETHICAL STANDARDS

The work with laboratory animals was carried out in accordance with international legal norms specified in the European Convention ETS No. 123 On the protection of vertebrate animals used for experiments or other scientific purposes [40], and the Manual on working with laboratory animals of the IBC RAS No. 57 dated 30.12.2011.

Additional information

Translated by E. Puchkov

Abbreviations: IR, ischemia–reperfusion; ROS, reactive oxygen species; PSH, Prx6-MnSOD-His-tag, a chimeric protein consisting of human peroxiredoxin 6 and Mn-containing superoxide dismutase; PCR, polymerase chain reaction, MDA, malondialdehyde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goncharov, R.G., Filkov, G.I., Trofimenko, A.V. et al. The Protective Effect of a Chimeric PSH Antioxidant Enzyme in Renal Ischemia–Reperfusion Injury. BIOPHYSICS 65, 303–312 (2020). https://doi.org/10.1134/S0006350920020050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920020050

Navigation