Skip to main content
Log in

Joint Analysis of the Heat Capacity and Thermal Expansion of Solid Potassium Chloride

  • Published:
Inorganic Materials Aims and scope

Abstract—

This paper describes a joint correlation analysis of the heat capacity Cp(T) and volume thermal expansivity β(T) of potassium chloride (KCl) over the entire temperature range of its solid state (from absolute zero to Tm). A trilinear model for the β(Cp) correlation dependence, consistent with experimental data and consisting of three smoothly joined linear segments, has been constructed. The differential Grüneisen parameter γ ' ~ ∂β/∂Cp, convenient for describing such behavior, has three characteristic steps. Analysis of data in this model has made it possible to tabulate thermodynamic and thermal expansion data for solid KCl, in good agreement with the most reliable experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bodryakov, V.Yu., Bi-linear Model of Correlation between Heat Capacity and Volume Thermal Expansivity of Solids as a Novel Tool for Evaluation the Reliable Numerical Data for Purposes of Chemical Thermodynamics. Application to Rare Gas Solids, Hauppauge: Nova Science, 2018.

    Google Scholar 

  2. Bodryakov, V.Yu., On the correlation between thermal expansion coefficient and heat capacity of argon cryocrystals, Phys. Solid State, 2014, vol. 56, no. 11, pp. 2359–2365.

    CAS  Google Scholar 

  3. Bodryakov, V.Yu., Correlation between the thermal expansion coefficient and heat capacity of an inert-gas single crystal: krypton, Tech. Phys., 2015, vol. 85, no. 3, pp. 381–384.

    Google Scholar 

  4. Bodryakov, V.Yu., Correlation between the thermal expansion coefficient and heat capacity of solid xenon, Inorg. Mater., 2015, vol. 51, no. 2, pp. 172–176.

    CAS  Google Scholar 

  5. Bodryakov, V.Yu., Correlation of temperature dependencies of thermal expansion and heat capacity of refractory metal up to the melting point: molybdenum, High Temp., 2014, vol. 52, no. 6, pp. 840–845.

    CAS  Google Scholar 

  6. Bodryakov, V.Yu., Correlation between temperature dependences of thermal expansivity and heat capacity up to the melting point of tantalum, High Temp., 2016, vol. 54, no. 3, pp. 316–321.

    CAS  Google Scholar 

  7. Bodryakov, V.Yu., Correlation of temperature dependences of thermal expansion and heat capacity of refractory metal up to the melting point: tungsten, High Temp., 2015, vol. 53, no. 5, pp. 643–648.

    CAS  Google Scholar 

  8. Bodryakov, V.Yu., A bi-linear model of the correlation between heat capacity and volume thermal expansivity of refractories as a novel tool for the evaluation of the reliable numerical data for chemical and physical thermodynamics, chapter 3: Grounds and modelling, chapter 4: Application to periclase and corundum, Bodryakov, V.Yu., Belgacem, S., Gregorová, E., et al., Refractory Materials: Characteristic Properties and Uses, Bryant, C., Ed., Hauppauge: Nova Science, 2018.

  9. Bodryakov, V.Yu., Specific heat and thermal expansion of refractory nonmetal: CaO, Open Sci. J. Mod. Phys., 2015, vol. 2, no. 4, pp. 50–54.

    Google Scholar 

  10. Bodryakov, V.Yu. and Babintsev, Yu.N., Correlation analysis of the heat capacity and thermal expansion of solid mercury, Phys. Solid State, 2015, vol. 57, no. 6, pp. 1264–1268.

    CAS  Google Scholar 

  11. Southard, J.C. and Nelson, R.A., Low temperature specific heats: IV. The heat capacities of potassium chloride, potassium nitrate and sodium nitrate, J. Am. Chem. Soc., 1933, vol. 55, no. 12, pp. 4865–4869.

    CAS  Google Scholar 

  12. Keesom, W.H. and Clark, C.W., The heat capacity of potassium chloride from 2.3 to 17°K, Physica, 1935, vol. 2, no. 1, pp. 698–706.

    Google Scholar 

  13. Clusius, K., Goldmann, J., and Perlick, A., Ergebnisse der Tieftemperaturforschung: VII. Die Molwärmen der Alkalihalogenide LiF, NaCl, KCl, KBr, KJ, RbBr und RbJ von 10° bis 273° abs, Z. Naturforsch., 1949, vol. 4a, no. 6, pp. 424–432.

    CAS  Google Scholar 

  14. Keesom, P.H. and Pearlman, N., The heat capacity of KCl below 4°K, Phys. Rev., 1953, vol. 91, no. 6, pp. 1354–1356.

    CAS  Google Scholar 

  15. Webb, F.J. and Wilks, J., The measurement of lattice specific heats at low temperatures using a heat switch, Proc. R. Soc. London, Ser. A, 1955, vol. 230, no. 1183, pp. 549–559.

    CAS  Google Scholar 

  16. Berg, W.T. and Morrison, J.A., The thermal properties of alkali halide crystals: I. The heat capacity of potassium chloride, potassium bromide, potassium iodide and sodium iodide between 2.8 and 270 K, Proc. R. Soc. London, Ser. A, 1957, vol. 242, no. 1231, pp. 467–477

    CAS  Google Scholar 

  17. Kelley, K.K., Contributions to the Data on Theoretical Metallurgy: XIII. High Temperature Heat Content, Heat Capacity and Entropy Data for the Elements and Inorganic Compounds, Washington, DC: US Government Printing Office, 1960.

  18. Kirkham, A.J. and Yates, B., The adiabatic measurement of the specific heats of potassium chloride and rubidium chloride at low temperatures, Cryogenics, 1968, vol. 8, no. 6, pp. 381–385.

    CAS  Google Scholar 

  19. Leadbetter, A.J. and Settatree, G.R., Anharmonic effects in the thermodynamic properties of solids: IV. The heat capacities of NaCl, KCl and KBr between 30 and 500°C, J. Phys. C: Solid State Phys., 1969, vol. 2, no. 3, pp. 385–392.

    Google Scholar 

  20. Touloukian, Y.S. and Buyco, E.H., Thermophysical Properties of Matter, vol. 5: Specific Heat—Nonmetallic Solids, New York: IFI/Plenum, 1970.

    Google Scholar 

  21. Thompson, W.T. and Flengas, S.N., Drop calorimetric measurements on some chlorides, sulfides, and binary melts, Can. J. Chem., 1971, vol. 49, no. 9, pp. 1550–1563.

    CAS  Google Scholar 

  22. Douglas, T.B. and Harman, A.W., Measured enthalpy and derived thermodynamic properties of crystalline and liquid potassium chloride, KCl, from 273 to 1174 K, J.Res. NBS, 1974, vol. 78A, no. 4, pp. 515–529.

    Google Scholar 

  23. Novitskii, L.A. and Kozhevnikov, I.G., Teplofizicheskie svoistva materialov pri nizkikh temperaturakh. Spravochnoe izdanie (Low-Temperature Thermophysical Properties of Materials: A Handbook), Moscow: Mashinostroenie, 1975.

  24. Robie, R.A., Hemingway, B.S., and Fisher, J.R., Thermodynamic Properties of Minerals and Related Substances at 298.15 K (25°C) and One Atmosphere (1.013 Bars) Pressure and at Higher Temperatures, U.S. Geological Survey Bulletin, Washington, DC: US Government Printing Office, 1979, no. 1452.

  25. Gurvich, L.V., Veits, I.V., Medvedev, V.A., et al., Termodinamicheskie svoistva individual’nykh veshchestv. Spravochnoe izdanie. V 4-kh tomakh (Thermodynamic Properties of Pure Substances: A Handbook in Four Volumes), Moscow: Nauka, 1982, vol. 4, parts 1, 2.

  26. El-Sharkawy, A.A., Rashed, I.H., Zaghloul, M.S., and Ghoniem, M.H., Study of thermal properties of polycrystalline KCl, KBr, and KI in the temperature range 300 to 600 K, Phys. Status Solidi A, 1984, vol. 86, no. 2, pp. 429–434.

    Google Scholar 

  27. Yamamoto, S. and Anderson, O.L., Elasticity and anharmonicity of potassium chloride at high temperature, Phys. Chem. Miner., 1987, vol. 14, no. 4, pp. 332–340.

    CAS  Google Scholar 

  28. Fizicheskie velichiny. Spravochnoe izdanie (Physical Quantities: A Handbook), Grigor’ev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.

  29. Anderson, O.L., Equations of State of Solids for Geophysics and Ceramic Sciences, Oxford Monographs on Geology and Geophysics, no. 31, 1995.

  30. Chase, M.W., NIST–JANAF thermochemical tables, J. Phys. Chem. Ref. Data, 1998, monograph 9, pp. 1–1951.

  31. Archer, D.G., Thermodynamic properties of the KCl + H2O system, J. Phys. Chem. Ref. Data, 1999, vol. 28, no. 1, pp. 1–16.

    CAS  Google Scholar 

  32. Sirdeshmukh, D.B., Sirdeshmukh, L., and Subhadra, K.G., Thermal properties, in Alkali Halides, Springer Series in Materials Science, vol. 49, Berlin: Springer, 2001, pp. 51–101.

  33. DDBST GmbH. Dortmund Data Bank (Online Services). http://www.ddbst.com/en/EED/PCP/HCP_C4577.php

  34. Hutchison, D.A., Density of potassium chloride, Phys. Rev., 1944, vol. 66, nos. 5–6, p. 144.

    CAS  Google Scholar 

  35. Combes, L.S., Ballard, S.S., and McCarthy, K.A., Mechanical and thermal properties of certain optical crystalline materials, J. Opt. Soc. Am., 1951, vol. 41, no. 4, pp. 215–222.

    CAS  Google Scholar 

  36. Srinivasan, R., Thermal expansion of sodium and potassium chlorides from liquid-air temperatures to +300°C, J.Ind. Inst. Sci. Sect. A, 1955, vol. 37, no. 4, pp. 232–241.

    Google Scholar 

  37. Yates, B. and Panter, C.H., Thermal expansion of alkali halides at low temperatures, Proc. Phys. Soc. London, 1962, vol. 80, no. 2, pp. 373–382.

    CAS  Google Scholar 

  38. Rubin, T., Johnston, H.L., and Altman, H.W., The thermal expansion of potassium chloride, J. Phys. Chem., 1962, vol. 66, no. 5, pp. 948–950.

    CAS  Google Scholar 

  39. Enck, F.D., Engle, D.G., and Marks, K.I., Thermal expansion of KCl at elevated temperatures, J. Appl. Phys., 1962, vol. 33, no. 6, pp. 2070–2072.

    CAS  Google Scholar 

  40. Whittemore, D.O., Thermal expansion of polycrystalline alkali halides, Bull. Am. Ceram. Soc., 1962, vol. 41, no. 8, pp. 513–515.

    CAS  Google Scholar 

  41. Trost, K.F., Die thermische Ausdehnung der Alkalihalogenide vom NaCl-Typ bei hohen und tiefen Temperaturen, Z. Naturforsch. B: Chem. Sci., 1963, vol. 18b, no. 8, pp. 662–664.

    CAS  Google Scholar 

  42. Schuele, D.E. and Smith, C.S., Low temperature thermal expansion of RbI, J. Phys. Chem. Solids, 1964, vol. 25, no. 8, pp. 801–814.

    CAS  Google Scholar 

  43. Meincke, P.P.M. and Graham, G.M., The thermal expansion of alkali halides, Can. J. Phys., 1965, vol. 43, no. 10, pp. 1853–1866.

    CAS  Google Scholar 

  44. White, G.K., The thermal expansion of alkali halides at low temperatures, Proc. R. Soc. London, A, 1965, vol. 286, no. 1405, pp. 204–217.

    CAS  Google Scholar 

  45. Von Guerard, B., Peisl, H., and Waidelich, W., Equilibrium vacancy concentration in KCl, Phys. Status Solidi B, 1968, vol. 29, no. 1, pp. K59–K61.

    CAS  Google Scholar 

  46. Leadbetter, A.J. and Newsham, D.M.T., Anharmonic effects in the thermodynamic properties of solids: III. A liquid gallium immersion dilatometer for the range 50–700°C: thermal expansivities of Hg, Ga, NaCl and KCl, J. Phys. C, 1969, vol. 2, no. 2, pp. 210–219.

    Google Scholar 

  47. Pathak, P.D. and Vasavada, N.G., Thermal expansion of NaCl, KCl and CsBr by X-ray diffraction and the law of corresponding states, Acta Crystallogr., Sect. A: Found. Crystallogr., 1970, vol. 26, no. 6, pp. 655–685.

    CAS  Google Scholar 

  48. Awad, F.G. and Gugan, D., The thermal expansion of copper, aluminum, potassium chloride, and potassium iodide between 10 and 80 K, Cryogenics, 1971, vol. 11, no. 5, pp. 414–415.

    CAS  Google Scholar 

  49. Rapp, J.E. and Merchant, H.D., Thermal expansion of alkali halides from 70 to 570 K, J. Appl. Phys., 1973, vol. 44, no. 9, pp. 3919–3923.

    CAS  Google Scholar 

  50. Botaki, A.A., Gyrbu, I.N., Ivankina, M.S., Pozdeeva, É.V., and Sharko, A.V., Temperature dependence of the elastic constants of a KCl–NaCl solid solution, Sov. Phys. J., 1973, vol. 16, no. 10, pp. 1441–1443.

    Google Scholar 

  51. Srivastava, K.K. and Merchant, H.D., Thermal expansion of alkali halides above 300°K, J. Phys. Chem. Solids, 1973, vol. 34, no. 12, pp. 2069–2073.

    CAS  Google Scholar 

  52. White, G.K. and Collins, J.G., The thermal expansion of alkali halides at low temperatures: II. Sodium, rubidium and caesium halides, Proc. R. Soc. London A, 1973, vol. 333, no. 1593, pp. 237–259.

    CAS  Google Scholar 

  53. Touloukian, Y.S., Kirby, R.K., Taylor, R.E., and Lee, T.Y.R., Thermophysical Properties of Matter, vol. 13: Thermal Expansion—Nonmetallic Solids, New York: IFI/Plenum, 1977.

    Google Scholar 

  54. Venudhar, Y.C., Iyengar, L., and Krishna Rao, K.V., Thermal expansion and Debye temperatures of KCl–KBr mixed crystals by an X-ray method, J. Mater. Sci., 1986, vol. 21, no. 1, pp. 110–116.

    CAS  Google Scholar 

  55. Kumar, M. and Upadhyay, S.P., Analysis of the thermal expansion coefficient and its temperature dependence for alkali halides, Phys. Status Solidi B, 1994, vol. 181, no. 1, pp. 55–61.

    CAS  Google Scholar 

  56. Fang, Zh.-H., Temperature dependence of volume thermal expansion for NaCl and KCl crystals, Phys. B (Amsterdam, Neth.), 2005, vol. 357, nos. 3–4, pp. 433–438.

  57. Srivastava, S.K., Sinha, P., and Panwar, M., Thermal expansivity and isothermal bulk modulus of ionic materials at high temperatures, Indian J. Pure Appl. Phys., 2009, vol. 47, pp. 175–179.

    CAS  Google Scholar 

  58. Durand, M.A., The temperature variation of the elastic moduli of NaCl, KCl and MgO, Phys. Rev., 1936, vol. 50, no. 5, pp. 449–455.

    CAS  Google Scholar 

  59. Norwood, M.H. and Briscoe, C.V., Elastic constants of potassium iodide and potassium chloride, Phys. Rev., 1958, vol. 112, no. 1, pp. 45–48.

    CAS  Google Scholar 

  60. Karo, A.M., Lattice vibrations in alkali halide crystals: II. Potassium and rubidium halides; cesium fluoride, J. Chem. Phys., 1960, vol. 33, no. 1, pp. 7–20.

    Google Scholar 

  61. Enck, F.D., Behavior of the principal elastic moduli and specific heat at constant volume of KCl at elevated temperatures, Phys. Rev., 1960, vol. 119, no. 6, pp. 1873–1877.

    CAS  Google Scholar 

  62. Slagle, O.D. and McKinstry, H.A., Temperature dependence of the elastic constants of the alkali halides: I. NaCl, KCl, and KBr, J. Appl. Phys., 1967, vol. 38, no. 2, pp. 437–446.

    CAS  Google Scholar 

  63. Decker, D.L., High-pressure equation of state for NaCl, KCl, and CsCl, J. Appl. Phys., 1971, vol. 42, no. 8, pp. 3239–3244.

    CAS  Google Scholar 

  64. Madan, M.P., Temperature dependence of the bulk modulus of alkali halides, J. Appl. Phys., 1971, vol. 42, no. 10, pp. 3888–3893.

    CAS  Google Scholar 

  65. Benckert, L. and Bäckström, G., Elastic constants of KCl and NaCl from Brillouin scattering, Phys. Scr., 1975, vol. 11, no. 1, pp. 43–46.

    CAS  Google Scholar 

  66. Kuchin, V.A. and Ul’yanov, V.L., Uprugie i neuprugie svoistva kristallov (Elastic and Inelastic Properties of Crystals), Moscow: Energoatomizdat, 1986.

  67. Kumar, M., Temperature dependence of interatomic separation and bulk modulus for ionic solids, Phys. B: Condens. Matter, 1995, vol. 205, no. 2, pp. 175–179.

    CAS  Google Scholar 

  68. Vijay, A. and Verma, T.S., Analysis of temperature dependence of elastic constants and bulk modulus for ionic solids, Phys. B: Condens. Matter, 2000, vol. 291, nos. 3–4, pp. 373–378.

    CAS  Google Scholar 

  69. Singh, M., Singh, P.P., Gupta, B.R., and Kumar, M., Temperature and pressure dependence of elastic constants, High Temp.–High Pressures, 2001, vol. 33, no. 2, pp. 199–206.

    CAS  Google Scholar 

  70. Bodryakov, V.Yu. and Povzner, A.A., Self-consistent thermodynamic description of a nonmetallic nonferromagnetic solid, exemplified by silicon, High Temp., 2004, vol. 42, no. 4, pp. 563–571.

    Google Scholar 

  71. Bodryakov, V.Yu. and Povzner, A.A., Description of the thermodynamic properties of a nonmetallic solid (germanium): a self-consistent thermodynamic approach, Phys. Solid State, 2003, vol. 45, no. 7, pp. 1254–1259.

    CAS  Google Scholar 

  72. Bodryakov, V.Yu., An integrated study of the effect of lattice and magnetic anharmonicity on the thermodynamic properties of solids, Doctoral (Phys.–Math.) Dissertation, Yekaterinburg, 2005.

  73. Kim, D.S., Hellman, O., Herriman, J., Smith, H.L., Lin, J.Y.Y., Shulumba, N., Niedziela, J.L., Li, C.W., Abernathy, D.L., and Fultz, B., Nuclear quantum effect with pure anharmonicity and the anomalous thermal expansion of silicon, Proc. Natl. Acad. Sci. USA, 2018, vol. 115, no. 9, pp. 1992–1997.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Bodryakov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodryakov, V.Y. Joint Analysis of the Heat Capacity and Thermal Expansion of Solid Potassium Chloride. Inorg Mater 56, 633–647 (2020). https://doi.org/10.1134/S0020168520060035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520060035

Keywords:

Navigation