Skip to main content
Log in

Luminescence of LiNbO3:Zn (0.03–5.50 mol % ZnO) Crystals of Different Origins

  • Published:
Inorganic Materials Aims and scope

Abstract—

A LiNbO3:Zn (4.69 mol % ZnO) crystal grown from a charge synthesized using homogeneously doped Nb2O5 as a precursor has been shown to contain less luminescence centers in comparison with a LiNbO3:Zn (4.60 mol % ZnO) crystal prepared via direct doping. In the case of LiNbO3:Zn crystals prepared via direct doping, the intensity of all luminescence bands varies monotonically as the ZnO concentration is raised to 4.60 mol %. At a ZnO concentration of ~4.60 mol %, the intensity of all the bands changes sharply, suggesting that the system of luminescence centers in the material undergoes structural changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Kemlin, V., Jegouso, D., Debray, J., Boursier, E., Segonds, P., Boulanger, B., Ishizuki, H., Taira, T., Mennerat, G., Melkonian, J.-M., and Godard, A., Dual-wavelength source from 5% MgO:PPLN cylinders for the characterization of nonlinear infrared crystals, Opt. Express, 2013, vol. 21, no. 23, pp. 28886–28891.

    Article  Google Scholar 

  2. Mirray, R., Runson, T.H., Guha, S., and Taylor, J.R., High average power parametric wavelength conversion at 3.31–3.48 m in MgO:PPLN, Opt. Express, 2017, vol. 25, no. 6, pp. 6421–6430.https://doi.org/10.1364/OE.25.006421

    Article  Google Scholar 

  3. Palatnikov, M.N., Sidorov, N.V., Makarova, O.V., and Biryukova, I.V., Fundamental’nye aspekty tekhnologii sil’no legirovannykh kristallov niobata litiya (Fundamental Aspects of the Technology of Heavily Doped Lithium Niobate Crystals), Apatity: Kol’sk. Nauchn. Tsentr Ross. Akad. Nauk, 2017.

  4. Stroganova, E.V., Galutskii, V.V., Sudarikov, K.V., Rasseikin, D.A., and Yakovenko, N.A., Determination of the center composition of gradient-activated lithium niobate crystals doped with magnesium and chromium, Optoelectron., Instrum. Data Process., 2016, vol. 52, no. 2, pp. 167–173.https://doi.org/10.3103/S8756699016020096

    Article  Google Scholar 

  5. Sidorov, N.V., Volk, T.R., Mavrin, B.N., and Kalinnikov, V.T., Niobat litiya: defekty, fotorefraktsiya, kolebatel’nyi spektr, polyaritony (Lithium Niobate: Defects, Photorefractive Properties, Vibrational Spectrum, and Polaritons), Moscow: Nauka, 2003.

  6. Chernaya, T.S., Maksimov, B.A., Volk, T.R., Rubinina, N.M., and Simonov, V.I., Zn atoms in lithium niobate and mechanism of their insertion into crystals, JETP Lett., 2001, vol. 73, no. 2, pp. 103–106.

    Article  CAS  Google Scholar 

  7. Chernaya, T.S., Volk, T.R., Verin, I.A., and Simonov, V.I., Threshold concentrations in zinc-doped lithium niobate crystals and their structural conditionality, Crystallogr. Rep., 2008, vol. 53, no. 4, pp. 573–578.

    Article  CAS  Google Scholar 

  8. Sidorov, N.V., Palatnikov, M.N., Teplyakova, N.A., Gabain, A.A., and Efremov, I.N., Structural homogeneity of photorefractive LiNbO3 crystals doped with 0.03–4.5 mol % of ZnO, Opt. Spectrosc., 2016, vol. 120, no. 4, pp. 633–638.https://doi.org/10.1134/S0030400X16040226

    Article  CAS  Google Scholar 

  9. Sidorov, N.V., Palatnikov, M.N., Teplyakova, N.A., Gabain, A.A., and Efremov, I.N., Photorefractive properties of zinc-doped congruent lithium niobate crystals, Perspekt. Mater., 2015, no. 7, pp. 5–14.

  10. Sidorov, N.V., Yanichev, A.A., Palatnikov, M.N., Gabain, A.A., and Pikul’, O.Yu., Optical homogeneity, defects, and photorefractive properties of stoichiometric, congruent, and zinc-doped lithium niobate crystals, Opt. Spectrosc., 2014, vol. 117, no. 1, pp. 76–85.

    Google Scholar 

  11. Palatnikov, M.N., Biryukova, I.V., Makarova, O.V., Sidorov, N.V., Efremov, V.V., Efremov, I.N., Teplyakova, N.A., and Manukovskaya, D.V., Research of concentration conditions for growth of strongly doped LiNbO3:Zn single crystals, in Advanced Materials, Cham: Springer, 2016, vol. 175, pp. 87–99.https://doi.org/10.1007/978-3-319-26324-3_7

  12. Masloboeva, S.M., Arutyunyan, L.G., and Palatnikov, M.N., RF Patent 2576641, Byull. Izobret., 2016, no. 7.

  13. Sidorov, N.V., Bobreva, L.A., Masloboeva, S.M., Teplyakova, N.A., Palatnikov, M.N., and Novikova, N.N., Synthesis of a homogeneously zinc-doped lithium niobate growth charge and comparative study of LiNbO3:Zn crystals of different origins, Perspekt. Mater., 2019, no. 2, pp. 68–78.https://doi.org/10.30791/1028-978X-2019-2-68-78

  14. Palatnikov, M.N., Biryukova, I.V., Sidorov, N.V., Denisov, A.V., Kalinnikov, V.T., Smith, P.G.R., and Shur, V.Ya., Growth and concentration dependencies of rare-earth doped lithium niobate single crystals, J. Cryst. Growth, 2006, vol. 291, pp. 390–397.https://doi.org/10.1016/j.jcrysgro.2006.03.022

    Article  CAS  Google Scholar 

  15. Palatnikov, M.N., Sidorov, N.V., Biryukova, I.V., Shcherbina, O.B., and Kalinnikov, V.T., Granulated starting mixture for the growth of lithium niobate single crystals, Perspekt. Mater., 2011, no. 2, pp. 93–97.

  16. Emond, M.H.J., Wiegel, M., Blasse, G., and Feigelson, R., Luminescence of stoichiometric lithium niobate crystals, Mater. Res. Bull., 1993, vol. 28, pp. 1025–1028. https://doi.org/10.1016/0025-5408(93)90140-9

    Article  CAS  Google Scholar 

  17. Krol, D.M., Blasse, G., and Powell, R.C., The influence of the Li/Nb ratio on the luminescence properties of LiNbO3, J. Chem. Phys., 1980, vol. 73, no. 1, pp. 163–166.https://doi.org/10.1063/1.439901

    Article  CAS  Google Scholar 

  18. Fischer, C., Wöhlecke, M., Volk, T., and Rubinina, N., Influence of the damage resistant impurities Zn and Mg on the UV-excited luminescence in LiNbO3, Phys. Status Solidi A, 1993, vol. 137, pp. 247–255.https://doi.org/10.1002/pssa.2211370122

    Article  CAS  Google Scholar 

  19. Tumuluri, A. and James Raju, K.C., Luminescence of LiNbO3 polycrystalline ceramics: effect of Sc2O3 and Lu2O3 doping, Ceram. Int., 2014, vol. 40, pp. 3371–3377.https://doi.org/10.1016/j.ceramint.2013.09.095

    Article  CAS  Google Scholar 

  20. Abrahams, S.C. and Marsh, P., Defect structure dependence on composition in lithium niobate, Acta. Crystallogr., Sect. B: Struct. Sci., 1986, vol. 42, pp. 61–68.

    Article  Google Scholar 

  21. Murillo, J.G., Herrera, G., Vega-Rios, A., Flores-Gallardo, S., Duarte-Moller, A., and Castillo-Torres, J., Effect of Zn doping on the photoluminescence properties of LiNbO3 single crystals, Opt. Mater., 2016, vol. 62, pp. 639–645.

    Article  CAS  Google Scholar 

  22. Sidorov, N.V., Yanichev, A.A., Palatnikov, M.N., and Gabain, A.A., Effects of the ordering of structural units of the cationic sublattice of LiNbO3:Zn crystals and their manifestation in Raman spectra, Opt. Spectrosc., 2014, vol. 116, no. 2, pp. 281–290.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.B. Pikulev for his assistance in designing the physical experiments and for useful discussions of the experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Smirnov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorov, N.V., Smirnov, M.V. & Palatnikov, M.N. Luminescence of LiNbO3:Zn (0.03–5.50 mol % ZnO) Crystals of Different Origins. Inorg Mater 56, 605–611 (2020). https://doi.org/10.1134/S0020168520060126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520060126

Keywords:

Navigation