Skip to main content
Log in

Uniaxial and biaxial deformation characteristics of AA7075-O friction stir welded joints

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

The formability of friction stir welded (FSW) AA7075-O aluminum alloy sheet specimens was tested under a range of warm uniaxial and biaxial loading conditions. To study the effect of FSW process conditions on formability, four groups of specimens were prepared using a range of FSW parameters. Two rotational speeds (500 and 1000 rpm), four travel speeds (4.2, 5.1, 8.5, 12.7 mm/s), and four axial force levels (6895, 7006, 7117, 7346 N) were included in the test matrix. Each specimen had a butt joint centrally located and oriented parallel to the sheet rolling direction. Specimens from each of the four groups were then tested under different combinations of uniaxial (e.g., transverse tensile test) and biaxial loading conditions (bulge test), including at two different strain rates (0.0013 and 0.013 1/s) and three different temperature levels (25, 200, and 300 °C). From the flow curves obtained from each test combination, the relative effect that FSW parameters (rotational speed, travel speed, and axial force) and forming parameters (temperature and strain rate) had on formability was investigated in detail. Mechanical and structural variations of the weld zone were compared with those of the base material. Tool rotational speed was observed to have a major effect on the yield and tensile strength of FSW blanks, with strengths varying by as much as 20% over the range process and forming parameters tested. Stress-strain curves obtained by using hydraulic bulge tests yielded a 5–10% increase in strain values compared with uniaxial tensile test results. In the bulge tests, the fracture zone was only observed to occur at the apex of the dome along the joint line for specimens tested at 300 °C and a strain rate of 0.0013 1/s. Specimens tested under other FSW parameters and process combinations did not fail in this location. In tensile tests, the specimens were only fractured on the welding line under forming conditions of 300 °C and at either the low or the high strain rate. Otherwise, the specimens failed away from the joint line. The maximum dome height, as a measure of formability, was obtained under forming conditions of 200 °C temperature and at a 0.0013 1/s strain rate. This result correlated well with stress-strain curves obtained from uniaxial tension testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hinrichsen J, Bautista C (2001) The challenge of reducing both airframe weight and manufacturing cost. Air Space Eur 3(3):119–121

    Article  Google Scholar 

  2. Nakai M, Eto T (2000) New aspects of development of high strength aluminum alloys for aerospace applications. Mater Sci Eng: A 285(1-2):62–68. https://doi.org/10.1016/S0921-5093(00)00667-5

    Article  Google Scholar 

  3. Wang XB, Pan Y, Lados DA (2018) Friction stir welding of dissimilar Al/Al and Al/non-Al alloys: a review. Metall Mater Trans B Process Metall Mater Process Sci 49(4):2097–2117. https://doi.org/10.1007/s11663-018-1290-z

    Article  CAS  Google Scholar 

  4. Kleiner M, Geiger M, Klaus A (2003) Manufacturing of lightweight components by metal forming. Cirp Annals-Manufacturing Technology 52(2):521–542. https://doi.org/10.1016/S0007-8506(07)60202-9

    Article  Google Scholar 

  5. Paik JK, van der Veen S, Duran A, Collette M (2005) Ultimate compressive strength design methods of aluminum welded stiffened panel structures for aerospace, marine and land-based applications: a benchmark study. Thin-Walled Struct 43(10):1550–1566. https://doi.org/10.1016/j.tws.2005.06.003

    Article  Google Scholar 

  6. Rajakumar S, Muralidharan C, Balasubramanian V (2011) Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints. Mater Des 32(2):535–549. https://doi.org/10.1016/j.matdes.2010.08.025

    Article  CAS  Google Scholar 

  7. Immarigeon JP, Holt RT, Koul AK, Zhao L, Wallace W, Beddoes JC (1995) Lightweight materials for aircraft applications. Mater Charact 35(1):41–67. https://doi.org/10.1016/1044-5803(95)00066-6

    Article  CAS  Google Scholar 

  8. Davis JR (1990) Metals handbook: properties and selection: irons, steels and high performance alloys, vol 1. ASM International, Materials Park

    Google Scholar 

  9. Linton VM, Ripley MI (2008) Influence of time on residual stresses in friction stir welds in agehardenable 7xxx aluminium alloys. Acta Mater 56(16):4319–4327. https://doi.org/10.1016/j.actamat.2008.04.059

    Article  CAS  Google Scholar 

  10. Li LJ, Orme K, Yu WB (2005) Effect of joint design on mechanical properties of AL7075 weldment. J Mater Eng Perform 14(3):322–326. https://doi.org/10.1361/10599490523940

    Article  CAS  Google Scholar 

  11. Thomas WM, Nicholas ED, Needham JC, Murch MG, Temple-Smith P, Dawes CJ (1995) Friction welding. US Patents

  12. Baratzadeh F (2010) An investigation into methods to increase the fatigue life of friction stir lap welds. Master Thesis, Wichita State University

  13. Peel M, Steuwer A, Preuss M, Withers PJ (2003) Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta Mater 51(16):4791–4801. https://doi.org/10.1016/S1359-6454(03)00319-7

    Article  CAS  Google Scholar 

  14. Hatamleh O, Singh PM, Garmestani H (2009) Corrosion susceptibility of peened friction stir welded 7075 aluminum alloy joints. Corros Sci 51(1):135–143. https://doi.org/10.1016/j.corsci.2008.09.031

    Article  CAS  Google Scholar 

  15. Guo JF, Chen HC, Sun CN, Bi G, Sun Z, Wei J (2014) Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters. Mater Des 56:185–192. https://doi.org/10.1016/j.matdes.2013.10.082

    Article  CAS  Google Scholar 

  16. Patel VV, Badheka V, Kumar A (2017) Effect of polygonal pin profiles on friction stir processed superplasticity of AA7075 alloy. J Mater Process Technol 240:68–76. https://doi.org/10.1016/j.jmatprotec.2016.09.009

    Article  CAS  Google Scholar 

  17. Patel V, Badheka V, Li W, Akkireddy S (2019) Hybrid friction stir processing with active cooling approach to enhance superplastic behavior of AA7075 aluminum alloy. Arch Civ Mech Eng 19(4):1368–1380. https://doi.org/10.1016/j.acme.2019.08.007

    Article  Google Scholar 

  18. Bahemmat P, Haghpanahi M, Besharati MK, Ahsanizadeh S, Rezaei H (2010) Study on mechanical, micro-, and macrostructural characteristics of dissimilar friction stir welding of AA6061-T6 and AA7075-T6. Proc Inst Mech Eng B J Eng Manuf 224(B12):1854–1865. https://doi.org/10.1243/09544054jem1959

    Article  Google Scholar 

  19. Rajakumar S, Balasubramanian V (2012) Predicting grain size and tensile strength of friction stir welded joints of AA7075-T6Aluminium alloy. Mater Manuf Process 27(1):78–83. https://doi.org/10.1080/10426914.2011.557123

    Article  CAS  Google Scholar 

  20. Ahmed MMZ, Ataya S, Selema MMES, Ammar HR, Ahmed E (2017) Friction stir welding of similar and dissimilar AA7075 and AA5083. J Mater Process Technol 242:77–91. https://doi.org/10.1016/j.jmatprotec.2016.11.024

    Article  CAS  Google Scholar 

  21. D’Urso G, Giardini C, Lorenzi S, Cabrini M, Pastore T (2017) The influence of process parameters on mechanical properties and corrosion behaviour of friction stir welded aluminum joints. Procedia Eng 207:591–596. https://doi.org/10.1016/j.proeng.2017.10.1026

  22. Bahrami M, Givi MKB, Dehghani K, Parvin N (2014) On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique. Mater Des 53:519–527. https://doi.org/10.1016/j.matdes.2013.07.049

    Article  CAS  Google Scholar 

  23. Avinash P, Manikandan M, Arivazhagan N, Ramkumar KD, Narayanan S (2014) Friction stir welded butt joints of AA2024 T3 and AA7075 T6 aluminum alloys. Procedia Eng 75:98–102. https://doi.org/10.1016/j.proeng.2013.11.020

  24. Sivachidambaram S, Rajamurugan G, Amirtharaj D (2015) Optimizing the parameters for friction stir welding of dissimilar Aluminium alloys AA5383/AA7075. ARPN J Eng Appl Sci 10:5434–5437

  25. Marzbanrad J, Akbari M, Asadi P, Safaee S (2014) Characterization of the influence of tool pin profile on microstructural and mechanical properties of friction stir welding. Metall Mater Trans B Process Metall Mater Process Sci 45(5):1887–1894. https://doi.org/10.1007/s11663-014-0089-9

    Article  CAS  Google Scholar 

  26. Grätzel M, Regensburg A, Hasieber M, Gerken JA, Schürer R, Bergmann JPJWW (2019) Scaling effects during friction stir welding of aluminum alloys with reduced tool aspect ratios. 63(2):337–347. https://doi.org/10.1007/s40194-018-0666-7

  27. Ipekoglu G, Erim S, Cam G (2014) Effects of temper condition and post weld heat treatment on the microstructure and mechanical properties of friction stir butt-welded AA7075 Al alloy plates. Int J Adv Manuf Technol 70(1–4):201–213. https://doi.org/10.1007/s00170-013-5255-8

    Article  Google Scholar 

  28. Bahemmat P, Haghpanahi M, Givi MKB, Seighalani KR (2012) Study on dissimilar friction stir butt welding of AA7075-O and AA2024-T4 considering the manufacturing limitation. Int J Adv Manuf Technol 59(9–12):939–953. https://doi.org/10.1007/s00170-011-3547-4

    Article  Google Scholar 

  29. Li DM, Ghosh A (2003) Tensile deformation behavior of aluminum alloys at warm forming temperatures. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 352(1–2):279–286. https://doi.org/10.1016/S0921-5093(02)00915-2

    Article  CAS  Google Scholar 

  30. Li DM, Ghosh AK (2004) Biaxial warm forming behavior of aluminum sheet alloys. J Mater Process Technol 145(3):281–293. https://doi.org/10.1016/j.jmatprotec.2003.07.003

    Article  CAS  Google Scholar 

  31. Morris LR, George RA (1977) Warm forming high-strength aluminum automotive parts. SAE Technical Paper

  32. Huo WT, Hou LG, Zhang YS, Zhang JS (2016) Warm formability and post-forming microstructure/property of high-strength AA 7075-T6 Al alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 675:44–54. https://doi.org/10.1016/j.msea.2016.08.054

    Article  CAS  Google Scholar 

  33. Wang H, Luo YB, Friedman P, Chen MH, Gao L (2012) Warm forming behavior of high strength aluminum alloy AA7075. Trans Nonferrous Metals Soc China 22(1):1–7. https://doi.org/10.1016/S1003-6326(11)61131-X

    Article  CAS  Google Scholar 

  34. Bate PS, Ridley N, Zhang B, Dover S (2006) Optimisation of the superplastic forming of aluminium alloys. J Mater Process Technol 177(1–3):91–94. https://doi.org/10.1016/j.jmatprotec.2006.03.200

    Article  CAS  Google Scholar 

  35. Abedrabbo N, Pourboghrat F, Carsley J (2006) Forming of aluminum alloys at elevated temperatures–part 1: material characterization. Int J Plast 22(2):314–341

    Article  CAS  Google Scholar 

  36. Huda Z, Zaharinie T (2009) Kinetics of grain growth in 2024-T3: an aerospace aluminum alloy. J Alloys Compd 478(1–2):128–132. https://doi.org/10.1016/j.jallcom.2008.11.071

    Article  CAS  Google Scholar 

  37. Hatamleh O, Lyons J, Forman R (2007) Laser and shot peening effects on fatigue crack growth in friction stir welded 7075-T7351 aluminum alloy joints. Int J Fatigue 29(3):421–434. https://doi.org/10.1016/j.ijfatigue.2006.05.007

    Article  CAS  Google Scholar 

  38. Figner G, Vallant R, Weinberger T, Enzinger N, Schröttner H, Paśič HJWW (2009) Friction stir spot welds between aluminium and steel automotive sheets: influence of welding parameters on mechanical properties and microstructure. 53(1):R13–R23. https://doi.org/10.1007/bf03266697

  39. Khodir SA, Shibayanagi T (2008) Friction stir welding of dissimilar AA2024 and AA7075 aluminum alloys. Mater Sci Eng B Solid State Mater Adv Technol 148:82–87. https://doi.org/10.1016/j.mseb.2007.09.024

  40. Fratini L, Buffa G, Shivpuri R (2010) Mechanical and metallurgical effects of in process cooling during friction stir welding of AA7075-T6 butt joints. Acta Mater 58(6):2056–2067. https://doi.org/10.1016/j.actamat.2009.11.048

    Article  CAS  Google Scholar 

  41. Dubourg L, Merati A, Jahazi M (2010) Process optimisation and mechanical properties of friction stir lap welds of 7075-T6 stringers on 2024-T3 skin. Mater Des 31(7):3324–3330. https://doi.org/10.1016/j.matdes.2010.02.002

    Article  CAS  Google Scholar 

  42. da Silva AAM, Arruti E, Janeiro G, Aldanondo E, Alvarez P, Echeverria A (2011) Material flow and mechanical behaviour of dissimilar AA2024-T3 and AA7075-T6 aluminium alloys friction stir welds. Mater Des 32(4):2021–2027. https://doi.org/10.1016/j.matdes.2010.11.059

    Article  CAS  Google Scholar 

  43. Patel VV, Badheka V, Kumar A (2016) Influence of friction stir processed parameters on superplasticity of Al-Zn-Mg-Cu alloy. Mater Manuf Process 31(12):1573–1582. https://doi.org/10.1080/10426914.2015.1103868

    Article  CAS  Google Scholar 

  44. Farzadi A (2017) Correlation between precipitate microstructure and mechanical properties in AA7075-T6 aluminum alloy friction stir welded joints. Mater Werkst 48(2):151–162. https://doi.org/10.1002/mawe.201700505

    Article  CAS  Google Scholar 

  45. Daniolos NM, Pantelis DI (2017) Microstructural and mechanical properties of dissimilar friction stir welds between AA6082-T6 and AA7075-T651. Int J Adv Manuf Technol 88(9–12):2497–2505. https://doi.org/10.1007/s00170-016-8965-x

    Article  Google Scholar 

  46. Patel V, Li W, Wang G, Wang F, Vairis A, Niu P (2019) Friction stir welding of dissimilar aluminum alloy combinations: state-of-the-art. Metals 9(3):270. https://doi.org/10.3390/met9030270

    Article  CAS  Google Scholar 

  47. Patel V, Li W, Vairis A, Badheka V (2019) Recent development in friction stir processing as a solid-state grain refinement technique: microstructural evolution and property enhancement. Crit Rev Solid State Mater Sci 44(5):378–426. https://doi.org/10.1080/10408436.2018.1490251

    Article  CAS  Google Scholar 

  48. Abu-Farha FK, Shuaib NA, Khraisheh MK, Weinmann KJ (2008) Limiting strains of sheet metals obtained by pneumatic stretching at elevated temperatures. Cirp Annals-Manufacturing Technology 57(1):275–278. https://doi.org/10.1016/j.cirp.2008.03.095

    Article  Google Scholar 

  49. Novotny S, Geiger M (2003) Process design for hydroforming of lightweight metal sheets at elevated temperatures. J Mater Process Technol 138(1–3):594–599. https://doi.org/10.1016/S0924-0136(03)00042-6

    Article  CAS  Google Scholar 

  50. Dehghani K, Ghorbani R, Soltanipoor AR (2015) Microstructural evolution and mechanical properties during the friction stir welding of 7075-O aluminum alloy. Int J Adv Manuf Technol 77(9–12):1671–1679. https://doi.org/10.1007/s00170-014-6574-0

    Article  Google Scholar 

  51. Koc M, Billur E, Cora ON (2011) An experimental study on the comparative assessment of hydraulic bulge test analysis methods. Mater Des 32(1):272–281. https://doi.org/10.1016/j.matdes.2010.05.057

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Necati Cora.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Commission XV - Design, Analysis, and Fabrication of Welded Structures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acar, D., Karalı, M., Cora, Ö.N. et al. Uniaxial and biaxial deformation characteristics of AA7075-O friction stir welded joints. Weld World 64, 1553–1564 (2020). https://doi.org/10.1007/s40194-020-00933-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-020-00933-z

Keywords

Navigation