Skip to main content
Log in

Regio- and stereochemistry in the aza-Diels–Alder reaction of an azoalkene with furan and 2,3-dihydrofuran: a molecular electron density theory study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In the present work, a molecular electron density theory (MEDT) study is carried out to shed light on the regio- and stereochemistry in two Diels–Alder (DA) reactions explored experimentally by Lemos and coworkers. These reactions involve the aza-Diels–Alder (ADA) reaction of an azoalkene AA with both furan FU and dihydrofuran DHFU in the presence of dichloromethane at room temperature. The regiochemistry of the obtained cycloadducts is completely opposite in the considered ADA reactions. The results of the local reactivity indices analysis based on the Parr functions confirmed the regiochemistry experimentally observed. Exploration of potential energy surfaces (PESs) indicated that the formation of endo adducts, P-1n and PDH-2n, are more favorable than exo ones. It was found that the electrostatic as well as the stabilizing π···π stacking interactions between two interacting fragments in the transition states associated with the endo attack can be considered as the origin of the endo stereochemistry predominance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Domingo LR (2016) Molecular electron density theory: a modern view of reactivity in organic chemistry. Molecules 21:1319–1334

    Google Scholar 

  2. Domingo LR, Ríos-Gutérrez M, Pérez P (2016) Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules 21:748–751

    Article  Google Scholar 

  3. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garćıa J, Cohen J, Yang AW (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    Article  CAS  Google Scholar 

  4. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  5. Bader RWF (1990) Atoms in molecules: a quantum theory. Claredon Press, Oxford

    Google Scholar 

  6. Margetic D (2019) Cycloaddition reactions: advances in research and applications. Nova Science Publishers, Incorporated

  7. Diels O, Alder K (1928) Synthesen in der hydroaromatischen Reihe. Justus Liebigs Ann Chem 460:98–122

    Article  CAS  Google Scholar 

  8. Domingo LR, Sáez JA (2009) Understanding the mechanism of polar Diels–Alder reactions. Org Biomol Chem 7:3576–3583

    Article  CAS  Google Scholar 

  9. Woodward RB, Hoffmann R (1969) The conservation of orbital symmetry. Angew Chem Int Ed Engl 8:781–853

    Article  CAS  Google Scholar 

  10. Domingo LR, Ríos-Gutiérrez M, Silvi B, Pérez P (2018) The mysticism of pericyclic reactions: a contemporary rationalisation of organic reactivity based on electron density analysis. Eur J Org Chem 2018:1107–1120

    Article  CAS  Google Scholar 

  11. Emamian S, Soleymani M, Moosavi SS (2019) Copper(I)-catalyzed asymmetric aza Diels–Alder reactions of azoalkenes toward fulvenes: a molecular electron density theory study. New J Chem 43:4765–4776

    Article  CAS  Google Scholar 

  12. Lopes SMM, Cardoso AL, Lemos A, Pinho e Melo TMVD (2018) Recent advances in the chemistry of conjugated nitrosoalkenes and azoalkenes. Chem Rev 118:11324–11352

    Article  CAS  Google Scholar 

  13. Chen J-R, Dong W-R, Candy M, Pan F-F, Jorres M, Bolm C (2012) Enantioselective synthesis of dihydropyrazoles by formal [4+1] cycloaddition of in situ-derived azoalkenes and sulfur ylides. J Am Chem Soc 134:6924–6927

    Article  CAS  Google Scholar 

  14. Yang X-L, Peng X-X, Chen F, Han B (2016) TEMPO-mediated aza-Diels–Alder reaction: synthesis of tetrahydropyridazines using ketohydrazones and olefins. Org Lett 18:2070–2073

    Article  CAS  Google Scholar 

  15. Zhong X, Lv J, Luo S (2015) [4 + 2] Cycloaddition of in situ generated 1,2-diaza-1,3-dienes with simple olefins: facile approaches to tetrahydropyridazines. Org Lett 17:1561–1564

    Article  CAS  Google Scholar 

  16. Reese CB, Sanders HP (1982) Conversion of tosylhydrazones of α-halogeno-aldehydes and -ketones into the corresponding phenylthio- and phenylseleno-derivatives. J Chem Soc Perkin Trans 1:2719–2714

    Article  Google Scholar 

  17. Wang Z, Yang Y, Gao F, Wang Z, Luo Q, Fang L (2018) Synthesis of 5-(trifluoromethyl) pyrazolines by formal [4 + 1]-annulation of fluorinated sulfur ylides and azoalkenes. Org Lett 20:934–937

    Article  Google Scholar 

  18. Gong X, Wu J (2015) Synthesis of pyrazolo[5,1-a]isoquinolines via a silver(I)-catalyzed reaction of (1-arylethylidene)hydrazides with N′-(2-alkynylbenzylidene)hydrazides. Org Biomol Chem 13:11657–11662

    Article  CAS  Google Scholar 

  19. Shelke AM, Suryavanshi G (2016) Fluoride-assisted synthesis of 1,4,5,6-tetrahydropyridazines via [4 + 2] cyclodimerization of in situ-generated azoalkenes followed by a C−N bond cleavage. Org Lett 18:3968–3971

    Article  CAS  Google Scholar 

  20. Morita S, Matsuo J (2017) Synthesis of various 6-substituted 1,4,5,6-tetrahydropyridazines by substitution of a 1,4,5,6-tetrahydro-6-tosylhydrazinopyridazines. Tetrahedron Lett 58:932–934

    Article  CAS  Google Scholar 

  21. Wu Q, Shao P-L, He Y (2019) Synthesis of 1,4,5,6-tetrahydropyridazines and pyridazines via transition-metal-free (4 + 2) cycloaddition of alkoxyallenes with 1,2-diaza-1,3-dienes. RSC Adv 9:21507–21512

    Article  CAS  Google Scholar 

  22. Cho JY, Kwon HC, Williams PG, Jensen PR, Fenical W (2006) Azamerone, a terpenoid phthalazinone from a marine-derived bacterium related to the genus streptomyces (Actinomycetales). Org Lett 8:2471–2474

    Article  CAS  Google Scholar 

  23. Bockholt H, Beale JM, Rohr J (1994) Biosynthetic investigations on pyridazomycin. J Angew Chem Int Ed Engl 33:1648–1651

    Article  Google Scholar 

  24. Wermuth CG, Schlewer G, Bourguignon JJ, Maghioros G, Bouchet M-J, Moire C, Kan J-P, Worms P, Biziere K (1989) 3-Aminopyridazine derivatives with atypical antidepressant, serotonergic and dopaminergic activities. J Med Chem 32:528–537

    Article  CAS  Google Scholar 

  25. Grosso C, Liber M, Brigas AF, Pinho e Melo TMVD, Lemos A (2019) Regioselectivity in hetero Diels–Alder reactions. J Chem Educ 96:148–152

    Article  CAS  Google Scholar 

  26. Zhao Y, Truhlar DG (2006) Comparative DFT study of van der Waals complexes: rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers. J Phys Chem 110:5121–5129

    Article  CAS  Google Scholar 

  27. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  28. Barone V, Cossi M, Rega N, Scalmani G (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comp Chem 24:669–681

    Article  Google Scholar 

  29. Parr RG, Szentpaly LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  30. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  31. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  32. Domingo LR, Perez P, Ortega DE (2013) Why do five-membered heterocyclic compounds sometimes not participate in polar Diels–Alder reactions? J Org Chem 78:2462–2471

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox D J (2013) Gaussian, Inc., Wallingford CT

  34. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874

    Article  CAS  Google Scholar 

  35. Domingo LR, Aurell MJ, Perez P, Contreras R (2002) Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels–Alder reactions. Tetrahedron 58:4417–4423

    Article  CAS  Google Scholar 

  36. Jaramillo P, Domingo LR, Chamorro E, Pérez P (2008) A further exploration of a nucleophilicity index based on the gas-phase ionization potentials. J Mol Struct THEOCHEM 865:68–72

    Article  CAS  Google Scholar 

  37. Domingo LR, Pérez P, Sáez JA (2013) Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv 3:1486–1494

    Article  CAS  Google Scholar 

  38. Chamorro E, Pérez P, Domingo LR (2013) On the nature of Parr functions to predict the most reactive sites along organic polar reactions. Chem Phys Lett 582:141–143

    Article  CAS  Google Scholar 

  39. Laidler KJ (1941) Theories of chemical reaction rates. McGraw-Hill, New York

    Google Scholar 

  40. Contreras-Garcia J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theor Comput 7:625–632

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the grant from Ayatollah Boroujerdi University with No. 15664-212210.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousa Soleymani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 642 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleymani, M., Emamian, S. Regio- and stereochemistry in the aza-Diels–Alder reaction of an azoalkene with furan and 2,3-dihydrofuran: a molecular electron density theory study. Struct Chem 31, 2161–2170 (2020). https://doi.org/10.1007/s11224-020-01572-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01572-2

Keywords

Navigation