Skip to main content

Advertisement

Log in

Mitigating Strategies of Gibberellins in Various Environmental Cues and Their Crosstalk with Other Hormonal Pathways in Plants: a Review

  • Review
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Phytohormones are chemical substances that in minute concentration instruct a plethora of developmental and physiological responses in plants. These signal molecules synthesized within the plant body are referred to as plant growth regulators. The available literature revealed that manipulation of phytohormonal content could be a promising approach towards augmentation of environmental stress tolerance in crop plants. They play pivotal role in acclimatization against unstable environmental extremes. Gibberellins are plant hormones affecting germination, stem elongation, flowering, abolition of dormancy, determination of sex expression, leaf and fruit senescence, and enzymatic stimulation. The uncertainty in climatic condition and over expanding population has led to a heap of abiotic stresses in plants. Salinity, high temperature, chilling, freezing, heavy metals, drought, flooding, allelochemicals, and radiation are the stresses that hinder development of plants. The perception of these stresses by plants occurs in a highly coordinated and interactive manner by triggering the activation of a myriad of elaborate signaling networks in which phytohormones play a significant role. The present review describes biosynthesis, signaling, and the potential roles of gibberellins as a tool in mitigating stress, increasing growth, development, and tolerance in plants. In future, revelations evolving the comprehensive knowledge to understand the relationship of plant growth regulators and stress conditions are discussed. This review also enlightens the latest research progress in GA signaling and its crosstalk with other hormonal pathways, underlying the multitude role of DELLA proteins with components of other hormonal signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achard P, Genschik P (2009) Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J Exp Bot 60(4):1085–1092

    CAS  PubMed  Google Scholar 

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    CAS  PubMed  Google Scholar 

  • Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20(8):2117–2129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Achard P, Gusti A, Cheminant S, Alioua M, Dhondt S, Coppens F, Beemster GT, Genschik P (2009) Gibberellin signaling controls cell proliferation rate in Arabidopsis. Curr Biol 19:1188–1193

    CAS  PubMed  Google Scholar 

  • Ahmad P (2010) Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity, Arch. Agron. Soil Sci 56(5):575–588. https://doi.org/10.1080/03650340903164231

  • Akter N, Rafiqul Islam M, Abdul Karim M, Tofazzal H (2014) Alleviation of drought stress in maize by exogenous application of gibberellic acid and cytokinin. J Crop Sci Biotech 17(1):41–48

    Google Scholar 

  • Ali MA, Asghar HN, Khan MY, Saleem M, Naveed M, Niazi NK (2015) Alleviation of nickel-induced stress in mungbean through application of gibberellic acid. Int J Agric Biol 17:990–994

    CAS  Google Scholar 

  • Alonso-Ramı’rez A, Rodrı’guez D, Reyes D, Angel Jime’nez J, Nicola’s G, Lo’pez-Climent M, Go’mez-Cadenas A, Nicola’s C (2009) Crosstalk between gibberellins and salicylic acid in early stress responses in Arabidopsis thaliana seeds. Plant Signal Behav 48:750–751

    Google Scholar 

  • Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, López-Climent M, Gómez-Cadenas A, Nicolás C (2009) Evidence for a role of gibberellins in salicylic acid modulated early plant responses to abiotic stress in Arabidopsis thaliana seeds. Plant Physiol 150:1335–1344

    PubMed  PubMed Central  Google Scholar 

  • Al-Shaheen MR, Soh A (2018) The effect of water deficit and gibberellic acid on growth, productivity of corn (Zea mays L.). J Adv Res Agri Sci Tech 1(1–2):52–56

    Google Scholar 

  • Amri B, Khamassi K, Ali MB, Teixeira da Silva JA, Ben Kaab LB (2016) Effects of gibberellic acid on the process of organic reserve mobilization in barley grains germinated in the presence of cadmium and molybdenum. South Afri J Bot 106:35–40

    CAS  Google Scholar 

  • An F, Zhang X, Zhu Z, Ji Y, He W, Jiang Z, Li M, Guo H (2012) Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. Cell Res 22:915–927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anwar A, Bai L, Miao L, Liu Y, Li S, Yu X, Li Y (2018) 24-Epibrassinolide ameliorates endogenous hormone levels to enhance low-temperature stress tolerance in cucumber seedlings. Int J Mol Sci 19(9):2497

    PubMed Central  Google Scholar 

  • Ariizumi T, Hauvermale AL, Nelson SK, Hanada A, Yamaguchi S, Steber CM (2013) Lifting Della repression of Arabidopsis seed germination by nonproteolytic gibberellins signaling. Plant Physiol 162:2125–2139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asgher M, Khan MIR, Anjum NA, Khan NA (2014) Minimising toxicity of cadmium in plants—role of plant growth regulators. Protoplasma 252(2):399–413

    PubMed  Google Scholar 

  • Bai MY, Shang JX, Oh E, Fan M, Bai Y, Zentella R, Sun TP, Wang ZY (2012) Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol 14:810–817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Massoud M, Karmous I, El Ferjani E, Chaoui A (2018) Alleviation of copper toxicity in germinating pea seeds by IAA, GA3, Ca and citric acid. J Plant Interact 13(1):21–29

    CAS  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    PubMed  PubMed Central  Google Scholar 

  • Boaretto LF, Carvalho G, Borgo L, Creste S, Landell MGA, Mazzafera P, Azevedo RA (2014) Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiol Biochem 74:165–175

    CAS  PubMed  Google Scholar 

  • Bonanno G, Borg JA, Di Martino V (2017) Levels of heavy metals in wetland and marine vascular plants and their bio monitoring potential: a comparative assessment. Sci Total Environ 576:796–806

    CAS  PubMed  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan BB, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp 1158–1249

    Google Scholar 

  • Bücker-Neto L, Paiva ALS, Machado RD, Arenhart RA, Margis-Pinheiro M (2017) Interactions between plant hormones and HMs responses. Genet Mol Biol 40:373–386

    PubMed  PubMed Central  Google Scholar 

  • Chapman EJ, Greenham K, Castillejo C, Sartor R, Bialy A, Sun TP, Estelle M (2012) Hypocotyl transcriptome reveals auxin regulation of growth-promoting genes through GA-dependent and-independent pathways. PloS one 7(5):e36210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87(5):455–462

    CAS  Google Scholar 

  • Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217:67–75

    CAS  PubMed  Google Scholar 

  • Criado MV, Veliz CG, Roberts IN, Caputo C (2017) Phloem transport of amino acids is differentially altered by phosphorus deficiency according to the nitrogen availability in young barley plants. Plant Growth Regul 82(1):151–160

    CAS  Google Scholar 

  • Dagar A, Weksler A, Friedman H, Lurie S (2012) Gibberellic acid (GA3) application at the end of pit ripening: effect on ripening and storage of two harvests of ‘September Snow’ peach. Sci Hortic 140:125–130

    CAS  Google Scholar 

  • Derkx MPM, Vermeer E, Karssen CM (1994) Gibberellins in seeds of Arabidopsis thaliana: biological activities, identification and effects of light and chilling on endogenous levels. Plant Growth Regul 15:223–234

    CAS  Google Scholar 

  • Ding Y, Sheng J, Li S, Nie Y, Zhao J, Zhu Z, Wang Z, Tang X (2015) The role of gibberellins in the mitigation of chilling injury in cherry tomato (Solanum lycopersicum L.) fruit. Postharvest Biol Technol 101:88–95

    CAS  Google Scholar 

  • Dobra J, Černý M, Štorchová H, Dobrev P, Skalák J, Jedelský PL, Lukšanová H, Gaudinová A, Pešek B, Malbeck J, Vanek T, Brzobohatý B, Vanková R (2015) The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis. Plant Sci 231:52–61

    CAS  PubMed  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Huang JL et al (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404

    CAS  Google Scholar 

  • Forghani AH, Almodares A, Ehsanpour AA (2018) Potential objectives for gibberellic acid and paclobutrazol under salt stress in sweet sorghum (Sorghum bicolor [L.] Moench cv. Sofra). Appl Biol Chem 61(1):113–124

    CAS  Google Scholar 

  • Gangwar S, Singh VP, Srivastava PK, Maurya JN (2011) Modification of chromium (VI) phytotoxicity by exogenous gibberellic acid application in Pisum sativum (L.) seedlings. Acta Physiol Plant 33:1385–1397. https://doi.org/10.1007/s11738-010-0672-x

    Article  CAS  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2013) Gibberellins and abscisic acid signal crosstalk: living and developing under unfavorable conditions. Plant Cell Rep 32:945–957. https://doi.org/10.1007/s00299-013-1409-2

    Article  CAS  Google Scholar 

  • Hadi F, Ali N, Ahmad A (2014) Enhanced phytoremediation of cadmium-contaminated soil by Parthenium hysterophorus plant: effect of gibberellic acid (GA3) and synthetic chelator, alone and in combinations. Bioremediat J 18:46–55

    CAS  Google Scholar 

  • Hakeem KR, Khan F, Chandna R, Saddiqui TO, Iqbal M (2012) Genotypic variability among soybean genotypes under NaCl stress and proteome analysis of salt-tolerant genotype. Appl Biochem Biotechnol 168:2309–2329

    CAS  PubMed  Google Scholar 

  • Hamayun M, Khan SA, Khan AL, Shin JH, Ahmad B, Shin DH, Lee IJ (2010) Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. J Agric Food Chem 58:7226–7232

    CAS  PubMed  Google Scholar 

  • Hameed A, Rasool S, Azooz MM, Hossain MA, Ahanger MA, Ahmad P (2016) Heavy metal stress: plant responses and signaling. In Plant metal interact:557–583 Elsevier

  • Haroun SA, Gamel RME, Bashasha JA, Aldrussi IA (2018) Protective role of β-sitosterol or gibberellic acid to Lycopersicum esculentum cultivars under temperature stress. Egypt J Bot 58(2):233–247

    Google Scholar 

  • Hasanuzzaman M, Hossain MA, da Silva JA, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Crop stress and its management: perspectives and strategies. Springer, Netherlands, pp 261–315

    Google Scholar 

  • Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026–1030

    CAS  PubMed  Google Scholar 

  • Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25

    CAS  PubMed  Google Scholar 

  • Heinrich M, Hettenhausen C, Lange T, Wunsche H, Fang J, Baldwin IT et al (2013) High levels of jasmonic acid antagonize the biosynthesis of gibberellins and inhibit the growth of Nicotiana attenuata stems. Plant J 73(4):591–606

    CAS  PubMed  Google Scholar 

  • Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY (2012) Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 24:2635–2648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hou X, Lee LYC, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev. Cell 19:884–894

    CAS  PubMed  Google Scholar 

  • Hussain I, Singh NB, Singh A, Singh H, Singh SC, Yadav V (2017) Exogenous application of phytosynthesized nanoceria to alleviate ferulic acid stress in Solanum lycopersicum. Sci Horticult 214:158–164. https://doi.org/10.1016/j.scienta.2016.11.032

    Article  CAS  Google Scholar 

  • Hyun Y, Richter R, Vincent C, Martinez-Gallegos R, Porri A, Coupland G (2016) Multi-layered regulation of SPL15 and cooperation with SOC1 integrate endogenous flowering pathways at the Arabidopsis shoot meristem. Dev Cell 37:254–266

    CAS  PubMed  Google Scholar 

  • Iqbal N, Nazar R, Iqbal MRK, Masood A, Nafees AK (2011) Role of gibberellins in regulation of source sink relations under optimal and limiting environmental conditions. Curr Sci 100:998–1007

    CAS  Google Scholar 

  • Jaleel CA, Gopi R, Manivannan P, Sankar B, Kishorekumar A, Panneerselvam R (2007) Antioxidant potentials and ajmalicine accumulation in Catharanthus roseus after treatment with giberellic acid. Colloids Surf B: Biointerfaces 60(2):195–200

    CAS  PubMed  Google Scholar 

  • Kandil A, Sharief AE, Abido WAE, Awed AM (2014) Effect of gibberellic acid on germination behaviour of sugar beet cultivars under salt stress conditions of Egypt. Society for Sugar Research & Promotion 2013. Sugar Tech 16(2):211–221

    CAS  Google Scholar 

  • Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, Sano N, Koshiba T, Kamiya Y, Ueda M, Seo M (2016) AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nat Commun 7

  • Kaur S, Gupta AK, Kaur N (1998) Gibberellin A3 reverses the effect of salt stress in chickpea (Cicer arietinum L.) seedlings by enhancing amylase activity and mobilization of starch in cotyledons. Plant Growth Regul 26:85–90

    CAS  Google Scholar 

  • Kaya CA, Tuna L, Alves AAC (2006) Gibberellic acid improves water deficit tolerance in maize plants. Acta Physiol Plant 28(4):331–337

    CAS  Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20:219–229

    CAS  PubMed  Google Scholar 

  • Khan MN, Siddiqui MH, Mohammad F, Naeem M, Khan MMA (2010) Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol Plant 32:121–132. https://doi.org/10.1007/s11738-009-0387-z

    Article  CAS  Google Scholar 

  • Kim DH, Yamaguchi S, Lim S, Oh E, Park J, Hanada A, Kamiya Y, Choi G (2008) SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. Plant Cell 20:1260–1277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kocaçalı_kan I, Ceylan M, Terzi I (2009) Effects of juglone on seedling growth in intact and coatless seeds of cucumber (Cucumis sativus cv. Beith Alpha). Sci Res Essay 4:039–041

    Google Scholar 

  • Kohli A, Sreenivasulu N, Lakshmanan P, Kumar PP (2013) The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Rep 32:945–957

    CAS  PubMed  Google Scholar 

  • Lantzouni O, Klermund C, Schwechheimer C (2017) Largely additive effects of gibberellins and strigolactone on gene expression in Arabidopsis thaliana seedlings. Plant J 92:924–938

    CAS  PubMed  Google Scholar 

  • Latif S, Chiapusio G, Weston LA (2017) Allelopathy and the role of allelochemicals in plant defence. In Advances in botanical research 82:19–54. Academic Press. https://doi.org/10.1016/bs.abr.2016.12.001

    Article  CAS  Google Scholar 

  • Li QF, He JX (2013) Mechanisms of signaling crosstalk between brassinosteroids and gibberellins. Plant Sig Behav 8:e24686. https://doi.org/10.4161/psb.24686

    Article  CAS  Google Scholar 

  • Li QZ, Li CH, Yu XC, Shi QH (2011) Gibberellin A3 pretreatment increased antioxidative capacity of cucumber radicles and hypocotyls under suboptimal temperature. Afr J Agric Res 6(17):4091–4098. https://doi.org/10.5897/AJAR11.336

    Article  Google Scholar 

  • Li QF, Wang C, Jiang L, Sun SS, He JX (2012) An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Sci Signal 5(244):72 https ://doi.org/10.1126/scisi gnal.2002908

  • Liang W, Ma X, Wan P, Liu L (2018) Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun 495(1):286–291

    CAS  PubMed  Google Scholar 

  • Lilley SJL, Gan Y, Graham IA, Nemhauser JL (2013) The effects of DELLAs on growth change with developmental stage and brassinosteroid levels. Plant J 76:165–173

    Google Scholar 

  • Lim S, Park J, Lee N, Jeong J, Toh S, Watanabe A, Kim J, Kang H, Kim DH, Kawakami N, Choi G (2013) ABA-insensitive3, ABA-insensitive5, and DELLAs interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. Plant Cell 25:4863–4878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Wang X, Yin L, Deng X, Wang S (2018) Exogenous application of gibberellic acid participates in up-regulation of lipid biosynthesis under salt stress in rice. Theoretical Exp Plant Physi 30(4):335–345

    CAS  Google Scholar 

  • MacNeill GJ, Mehrpouyan S, Minow MA, Patterson JA, Tetlow IJ, Emes MJ, Raines C (2017) Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. J experi Bot 68(16):4433–4453

    CAS  Google Scholar 

  • Maggio A, Barbieri G, Raimondi G, Pascale SD (2010) Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. J Plant Growth Regul 29:63–72

    CAS  Google Scholar 

  • Mahalingam R (2015) Consideration of combined stress: a crucial paradigm for improving multiple stress tolerance in plants, in Combined Stresses in Plants, ed. R. Mahalingam (Berlin: Springer) 1–25

  • Manjili FA, Sedghi M, Pessarakli M (2012) Effects of phytohormones on proline content and antioxidant enzymes of various wheat cultivars under salinity stress. J Plant Nutr 35(7):1098–1111

    CAS  Google Scholar 

  • Marichali A, Dallali S, Ouerghemmi S, Sebei H, Hosni K (2014) Germination, morphophysiological and biochemical responses of coriander (Coriandrum sativum L.) to zinc excess. Ind Crop Prod 55:248–257

    CAS  Google Scholar 

  • Masood A, Khan NA (2013) Ethylene and gibberellic acid interplay in regulation of photosynthetic capacity inhibition by cadmium. J Plant Biochem Physiol 1:1–3

    Google Scholar 

  • Masood A, Khan MIR, Fatma M, Asgher M, Per TS, Khan NA (2016) Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard. Plant Physiol Biochem 104:1–10

    CAS  PubMed  Google Scholar 

  • Meng H, Hua S, Shamsi IH, Jilani G, Li Y, Jiang L (2009) Cadmium-induced stress on the seed germination and seedling growth of Brassica napus L., and its alleviation through exogenous plant growth regulators. Plant Growth Regul 58:47–59. https://doi.org/10.1007/s10725-008-9351-y

    Article  CAS  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237–251

    CAS  PubMed  Google Scholar 

  • Mohamed MM, Abdel-Razik KE (2005) Interactive effect of heavy metals and gibberellic acid on mitotic activity and some metabolic changes of Vicia faba L. plants. Cytologia 70:275–282

    Google Scholar 

  • Nakamura H, Xue YL, Miyakawa T, Hou F, Qin HM, Fukui K, Shi X, Ito E, Ito S, Park SH, Miyauchi Y, Asano A, Totsuka N, Ueda T, Tanokura M, Asami T (2013) Molecular mechanism of strigolactone perception by DWARF14. Nat Commun 4:2613

    PubMed  Google Scholar 

  • Nasri N, Mahmoudi H, Baatour O, M’rah S, Kaddour R, Lachaˆal M (2012) Effect of exogenous gibberellic acid on germination, seedling growth and phosphatase activities in lettuce under salt stress. Afr J Biotechnol 11(56):11967–11971

    Google Scholar 

  • Novak O, Napier R, Ljung K (2017) Zooming in on plant hormone analysis: tissue- and cell-specific approaches. Annu Rev Plant Biol 68:323–348

    CAS  PubMed  Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oh E, Zhu JY, And Wang ZY (2012) Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat Cell Biol 14:802–809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oh E, Zhu JY, Bai MY, Arenhart RA, Sun Y, Wang ZY (2014) Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. eLife 3:e03031

    PubMed Central  Google Scholar 

  • Okuno A, Hirano K, Asano K, Takase W, Masuda R, Morinaka Y, Ueguchi-Tanaka M, Kitano H, Matsuoka M (2014) New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellins producing varieties. PLoS One 9:e86870

    PubMed  PubMed Central  Google Scholar 

  • Omoarelojie LO, Kulkarni MG, Finnie JF, Van Staden J (2019) Strigolactones and their crosstalk with other phytohormones. Ann Bot 124:749–767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22:4056–4075. https://doi.org/10.1007/s11356-014-3739-1

    Article  CAS  Google Scholar 

  • Park J, Lee N, Kim W, Lim S, Choi G (2011) ABI3 and PIL5 collaboratively activate the expression of SOMNUS by directly binding to its promoter in imbibed Arabidopsis seeds. Plant Cell 23:1404–1415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    CAS  PubMed  Google Scholar 

  • Per TS, Khan MIR, Anjum NA, Masood A, Hussain SJ, Khan NA (2018) Jasmonates in plants under abiotic stresses: crosstalk with other phytohormones matters. Environ Exp Bot 145:104–120

    CAS  Google Scholar 

  • Peres ALG, Soares JS, Tavares RG, Righetto G, Zullo MA, Mandava NB, Menossi M (2019) Brassinosteroids, the sixth class of phytohormones: a molecular view from the discovery to hormonal interactions in plant development and stress adaptation. Int J Mol Sci 20(2):331

    PubMed Central  Google Scholar 

  • Pérez-Jiménez M, Pazos-Navarro M, Piñero MC, Otálora-Alcón G, López-Marín J, del Amor FM (2016) Regulation of the drought response of sweet pepper (Capsicum annuum L.) by foliar-applied hormones, in Mediterranean-climate greenhouse conditions. Plant Growth Regul 80(2):159–169. https://doi.org/10.1007/s10725-016-0153-3

    Article  CAS  Google Scholar 

  • Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L (2008) The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20:2729–2745

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qi T, Huang H, Wu D, Yan J, Qi Y, Song S, Xie D (2014) Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/ MYB complex to modulate gibberellin and jasmonate signalling synergy. Plant Cell 26:1118–1133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasool S, Urwat U, Nazir M, Zargar SM, Zargar MY (2018) Cross talk between phytohormone signaling pathways under abiotic stress conditions and their metabolic engineering for conferring abiotic stress tolerance. In: Abiotic stress-mediated sensing and signaling in plants: an Omics perspective. Springer, Singapore, pp 329–350

    Google Scholar 

  • Rice EL (1984) Allelopathy. Academic Press, Orlando, Florida, USA 422

  • Rizwan M, Ali S, Abbas F, Adrees M, Zia-ur-Rehman M, Farid M, Gill RA, Ali B (2017) Role of organic and inorganic amendments in alleviating heavy metal stress in oil seed crops. Oil seed crops: yield and adaptations under environmental stress 12:224–235

    Google Scholar 

  • Rodriguez AA, Stella AM, Storni MM, Zulpa G, Zaccaro MC (2006) Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Syst 2:7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ross JJ, Miraghazadeh A, Beckett AH, Quittenden LJ, McAdam EL (2016) Interactions between gibberellins and other hormones. Annual Plant Reviews 49:229–252. https://doi.org/10.1002/9781119210436.ch8

    Article  CAS  Google Scholar 

  • Saeed T, Hassan I, Abbasi NA, Jilani G (2014) Effect of gibberellic acid on the vase life and oxidative activities in senescing cut gladiolus flowers. Plant Growth Regul 72:89–95

    CAS  Google Scholar 

  • Saeidi-Sar S, Khavari-Nejad RA, Fahimi H, M. Ghorbanli M, Majd A (2007) Interactive effects of gibberellin A3 and ascorbic acid on lipid peroxidation and antioxidant enzyme activities in glycine max seedlings under nickel. Russ. J Plant Physiol 54:74–79

    CAS  Google Scholar 

  • Saeidi-Sar S, Abbaspour H, Afshari H, Yaghoobi SR (2013) Effects of ascorbic acid and gibberellin A3 on alleviation of salt stress in common bean (Phaseolus vulgaris L.) seedlings. Acta Physiol Plant 35:667–677. https://doi.org/10.1007/s11738-012-1107-7

    Article  CAS  Google Scholar 

  • Sakata T, Oda S, Tsunaga Y, Shomura H, Kawagishi-Kobayashi M, Aya K, Saeki K, Endo T, Nagano K, KojimaM SH, Watanabe M, Matsuoka M, Higashitani A (2014) Reduction of gibberellin by low temperature disrupts pollen development in rice. Plant Physiol 164:2011–2019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saleem M, Asghar HN, Khan MY, Zahir ZA (2015) Gibberellic acid in combination with pressmud enhances the growth of sunflower and stabilizes chromium(VI)-contaminated soil. Environ Sci Pollut Res 22:10610–10617. https://doi.org/10.1007/s11356-015-4275-3

    Article  CAS  Google Scholar 

  • Santner A, Calderon-Villalobos L, Estelle M (2009) Plant hormones is versatile chemical regulators of plant growth. Nature Chem Biol 5:301–307

    CAS  Google Scholar 

  • Scavo A, Restuccia A, Mauromicale G (2018) Allelopathy: principles and basic aspects for agroecosystem control. In Sustainable agriculture reviews 28:47–101. Springer, Cham. https://doi.org/10.1007/978-3-319-90309-5_2

    Article  Google Scholar 

  • Schwechheimer C (2008) Understanding gibberellic acid signaling—are we there yet?. Curr Opin Plant Biol 11(1):9–15

  • Shaddad MAK, Abd El-Samad HM, Mostafa D (2013) Role of gibberellic acid (GA3) in improving salt stress tolerance of two wheat cultivars. Int J Plant Physiol Biochem 5(4):50–57

    Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Basalah MO (2011) Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L. Protoplasma 248:503–511

    CAS  PubMed  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    PubMed  PubMed Central  Google Scholar 

  • Souza KO, Viana RM, Oliveira LS, Moura CFH, Miranda MRA (2016) Preharvest treatment of growth regulators influences postharvest quality and storage life of cashew apples. Sci. Horticult. 209:53–60

    CAS  Google Scholar 

  • Sun Y, Xu Y, Zhou Q, Wang L, Lin D, Liang X (2013) The potential of gibberellic acid 3 (GA3) and Tween-80 induced phytoremediation of co-contamination of Cd and Benzo [a] pyrene (B [a] P) using Tagetes patula. J Environ Manag 114:202e208

    Google Scholar 

  • Tabatabaei SA (2013) The effect of salicylic acid and gibberellin on enzyme activity and germination characteristics of wheat seeds under salinity stress conditions. Int J Agric Crop Sci 6(5):236–240

    Google Scholar 

  • Tal I, Zhang Y, Jørgensen ME, Pisanty O, Barbosa ICR, Zourelidou M, Regnault T, Crocoll C, Erik Olsen C, Weinstain R, Schwechheimer C, Halkier BA, Nour-Eldin HH, Estelle M, Shani E (2016) The Arabidopsis NPF3 protein is a GA transporter. Nat Commun 7

  • Terzi I (2008) Allelopathic effects of juglone and decomposed walnut leaf juice on muskmelon and cucumber seed germination and seedling growth. Afr J Biotech 7(12):1870–1874

    Google Scholar 

  • Terzi I (2009) Allelopathic effects of juglone and walnut leaf and fruit hull extracts on seed germination and seedling growth in muskmelon and cucumber. Asian J Chem 21(3):1840–1846

    CAS  Google Scholar 

  • Terzi I, Kocacalıskan I (2009) Alleviation of juglone stress by plant growth regulators in germination of cress seeds. Sci Res Essay 4(5):436–439

    Google Scholar 

  • Tong H, Xiao Y, Liu D, Gao S, Liu L, Yin Y, Jin Y, Qian Q, Chu C (2014) Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell 26:4376–4393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Chauhan DK, Dubey NK, and Prasad R (2016). “Silicon as a beneficial element to combat the adverse effect of drought in agricultural crops,” in water stress and crop plants: a sustainable approach, ed. P. Ahmad (Hoboken, NJ: John Wiley & Sons, Ltd.), 682–694

  • Tuna AL, Kaya C, Dikilitas M, Higgs D (2008) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameter and nutritional status in maize plants. Environ Exp Bot 62:1–9

    CAS  Google Scholar 

  • Unterholzner SJ, Rozhon W, Papacek M, Ciomas J, Lange T, Kugler KG, Mayer KF, Sieberer T, Poppenberger B (2015) Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. Plant Cell 27:2261–2272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161. https://doi.org/10.3389/fpls.2017.00161

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang B, Wei H, Xue Z, Zhang WH (2017) Gibberellins regulate iron deficiency-response by influencing iron transport and translocation in rice seedlings (Oryza sativa). Ann Bot 119(6):945–956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y-H, Zhang G, Chen Y, Gao J, Yan-Ru S, Ming-Fa S, Jian-Ping C (2019) Exogenous application of gibberellic acid and ascorbic acid improved tolerance of okra seedlings to NaCl stress. Acta Physiol Plant 41:93. https://doi.org/10.1007/s11738-019-2869-y

    Article  CAS  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. CROP J 4(3):162–176

    Google Scholar 

  • Wild M, Davière JM, Cheminant S, Regnault T, Baumberger N, Heintz D, Baltz R, Genschik P, Achard P (2012) The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. Plant Cell 24:3307–3319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Onik J, Hu X, Duan Y, Lin Q (2018) Effects of (S)-Carvone and gibberellin on sugar accumulation in potatoes during low temperature storage. Molecules 23(12):3118

    PubMed Central  Google Scholar 

  • Xu Q, Burgess P, Xu J, Meyer W, Huang B (2016) Osmotic stress-and salt stress-inhibition and gibberellin-mitigation of leaf elongation associated with up-regulation of genes controlling cell expansion. Environ Exp Bot 131:101–109

    CAS  Google Scholar 

  • Yadav V, Singh NB, Singh H, Singh A, Hussain I (2018a) Alleviation of deleterious effects due to 2-benzoxazolinone by exogenous application of spermidine in Solanum lycopersicum. Int J Veg Sci 24:466–482

    Google Scholar 

  • Yadav V, Singh H, Singh A, Hussain I, Singh NB (2018b) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress in maize (Zea mays L.) grown under cinnamic acid stress. Russ Agric Sci 44(1):9–17

    Google Scholar 

  • Yadav V, Singh NB, Singh H, Singh A, Hussain I (2019) Putrescine affects tomato growth and response of antioxidant defense system due to exposure to cinnamic acid. Int J Veg Sci 25(3):259–277

    Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59(225):251

    Google Scholar 

  • Yang DL, Yao J, Mei CS, Tong XH, Zeng LJ, Li Q, Xiao LT, Sun TP, Li J, Deng XW et al (2012) Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Natl Acad Sci U S A 109:1192–1200

    Google Scholar 

  • Yao W, Shen Y (2018) Effects of gibberellic acid and magnetically treated water on physiological characteristics of Tilia miqueliana seeds. Can J For Res 48(5):554–558

    CAS  Google Scholar 

  • Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signalling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139. https://doi.org/10.1016/j.pbi.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  • Zentella R, Zhang ZL, Park M, Thomas SG, Endo A, Murase K, Fleet CM, Jikumaru Y, Nambara E, Kamiya Y et al (2007) Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19:3037–3057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Jing Y, Jiang Z, Lin R (2014) The chromatin remodeling factor PICKLE integrates brassinosteroid and gibberellins signaling during Skotomorphogenic growth in Arabidopsis. Plant Cell 26:2472–2485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao RR, Sheng JP, Lv SN, Zheng Y, Zhang J, Yu MM, Shen L (2011) Nitric oxide participates in the regulation of LeCBF1 gene expression and improves cold tolerance in harvested tomato fruit. Postharvest Biol Technol 62:121–126

    CAS  Google Scholar 

  • Zhao H, Lv W, Fan Y, Li H (2018) Gibberellic acid enhances postharvest toon sprout tolerance to chilling stress by increasing the antioxidant capacity during the short-term cold storage. Sci. Horticult. 237:184–191

    Google Scholar 

  • Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L, Ma W, Gao H, Chen J, Yang C, Wang D, Tan J, Zhang X, Guo X, Wang J, Jiang L, Liu X, Chen W, Chu J, Yan C, Ueno K, Ito S, Asami T, Cheng Z, Wang J, Lei C, Zhai H, Wu C, Wang H, Zheng N, Wan J (2013) D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling. Nature 504:406–410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu XF, Jiang T, Wang ZW, Lei GJ, Shi YZ, Li GX, Zheng SJ (2012) Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. J Hazard Mater 239:302–307

    PubMed  Google Scholar 

  • Zhu Z, Ding Y, Zhao J, Nie Y, Zhang Y, Sheng J, Tang X (2016) Effects of postharvest gibberellic acid treatment on chilling tolerance in cold-stored tomato (Solanum lycopersicum L.) fruit. Food Bioprocess Technol 9:1202–1209

    CAS  Google Scholar 

Download references

Acknowledgments

The author is thankful to the University Grant Commission (UGC), New Delhi, and the University of Allahabad, Allahabad, India, for providing financial assistance to Miss Niharika.

Author information

Authors and Affiliations

Authors

Contributions

Niharika, NBS, and AS have designed and conceptualized this review article. Niharika, SK, VY, CB, and RY wrote this review article. NBS and AS critically evaluated this article. All authors read and approved the article.

Corresponding authors

Correspondence to Narsingh Bahadur Singh or Ajey Singh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Niharika first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niharika, Singh, N.B., Singh, A. et al. Mitigating Strategies of Gibberellins in Various Environmental Cues and Their Crosstalk with Other Hormonal Pathways in Plants: a Review. Plant Mol Biol Rep 39, 34–49 (2021). https://doi.org/10.1007/s11105-020-01231-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-020-01231-0

Keywords

Navigation