Skip to main content
Log in

High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Displays play an extremely important role in modern information society, which creates a never-ending demand for the new and better products and technologies. The latest requirements for novel display technologies focus on high resolution and high color gamut. Among emerging technologies that include organic light-emitting diode (OLED), micro light-emitting diode (micro-LED), quantum dot light-emitting diode (QLED), laser display, holographic display and others, QLED is promising owing to its intrinsic high color gamut and the possibility to achieve high resolution with photolithography approach. However, previously demonstrated photolithography techniques suffer from reduced device performance and color impurities in subpixels from the process. In this study, we demonstrated a sacrificial layer assisted patterning (SLAP) approach, which can be applied in conjunction with photolithography to fabricate high-resolution, full-color quantum dot (QD) patterns. In this approach, the negative photoresist (PR) and sacrificial layer (SL) were utilized to determine the pixels for QD deposition, while at the same time the SL helps protect the QD layer and keep it intact (named PR-SL approach). To prove this method’s viability for QLED display manufacture, a 500-ppi, full-color passive matrix (PM)-QLED prototype was fabricated via this process. Results show that there were no color impurities in the subpixels, and the PM-QLED has a high color gamut of 114% National Television Standards Committee (NTSC). To the best of our knowledge, this is the first full-color QLED prototype with such a high resolution. We anticipate that this innovative patterning technique will open a new horizon for future display technologies and may lead to a disruptive and innovative change in display industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salehi, A.; Fu, X. Y.; Shin, D. H.; So, F. Recent advances in OLED optical design. Adv. Funct. Mater.2019, 29, 1808803.

    Google Scholar 

  2. Wei, Q.; Fei, N. N.; Islam, A.; Lei, T.; Hong, L.; Peng, R. X.; Fan, X.; Chen, L.; Gao, P. Q.; Ge, Z. Y. Small-molecule emitters with high quantum efficiency: Mechanisms, structures, and applications in OLED devices. Adv. Opt. Mater.2018, 6, 1800512.

    Google Scholar 

  3. Wong, W. Y.; Ho, C. L. Functional metallophosphors for effective charge carrier injection/transport: New robust OLED materials with emerging applications. J. Mater. Chem.2009, 19, 4457–4482.

    CAS  Google Scholar 

  4. Wu, T. Z.; Sher, C. W.; Lin, Y.; Lee, C. F.; Liang, S. J.; Lu, Y. J.; Huang Chen, S. W.; Guo, W. J.; Kuo, H. C.; Chen, Z. Mini-LED and micro-LED: Promising candidates for the next generation display technology. Appl. Sci.2018, 8, 1557.

    Google Scholar 

  5. Huang, Y. G.; Tan, G. J.; Gou, F. W.; Li, M. C.; Lee, S. L.; Wu, S. T. Prospects and challenges of mini-LED and micro-LED displays. J. Soc. Inf. Disp.2019, 27, 387–401.

    Google Scholar 

  6. Rogach, A. L.; Gaponik, N.; Lupton, J. M.; Bertoni, C.; Gallardo, D. E.; Dunn, S.; Li Pira, N.; Paderi, M.; Repetto, P.; Romanov, S. G. et al. Light-emitting diodes with semiconductor nanocrystals. Angew. Chem., Int. Ed.2008, 47, 6538–6549.

    CAS  Google Scholar 

  7. Pietryga, J. M.; Park, Y. S.; Lim, J.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev.2016, 116, 10513–10622.

    CAS  Google Scholar 

  8. Erdem, T.; Demir, H. V. Color science of nanocrystal quantum dots for lighting and displays. Nanophotonics2013, 2, 57–81.

    CAS  Google Scholar 

  9. Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics2013, 7, 13–23.

    CAS  Google Scholar 

  10. Yuan, Y.; Bi, Y.; Sun, M. Y.; Wang, D. Z.; Wang, D. D.; Gao, W. N.; Zhang, S. Speckle evaluation in laser display: From speckle contrast to speckle influence degree. Opt. Commun.2020, 454, 124405.

    CAS  Google Scholar 

  11. Hargis, D. E.; Takeuchi, E. B.; Bergstedt, R.; Flint, G.; Nelte, S.; Pessot, M. Solid-state laser-based displays. SID Symp. Dig. Tech. Pap.1999, 30, 986–989.

    Google Scholar 

  12. Yaraş, F.; Kang, H.; Onural, L. Circular holographic video display system. Opt. Express2011, 19, 9147–9156.

    Google Scholar 

  13. Khan, J.; Blackwell, C.; Can, C.; Underwood, I. 16-1: Invited Paper: Holographic volumetric 3D displays. SID Symp. Dig. Tech. Pap.2018, 49, 177–180.

    Google Scholar 

  14. Zhang, L. Q.; Yang, X. L.; Jiang, Q.; Wang, P. Y.; Yin, Z. G.; Zhang, X. W.; Tan, H. R.; Yang, Y.; Wei, M. Y.; Sutherland, B. R. et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat. Commun.2017, 8, 15640.

    CAS  Google Scholar 

  15. Xiao, Z. G.; Kerner, R. A.; Zhao, L. F.; Tran, N. L.; Lee, K. M.; Koh, T. W.; Scholes, G. D.; Rand, B. P. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics2017, 11, 108–115.

    CAS  Google Scholar 

  16. Summary of the global AMOLED smartphone panel market in 2019. Sigmaintell2020. http://www.sigmaintell.com/en/search.php?cid=41&keys=Summary+of+the+global+AMOLED+smartphone+panel+market+in+2019.

  17. Ando, M.; Imai, T.; Yasumatsu, R.; Matsumi, T.; Tanaka, M.; Hirano, T.; Sasaoka, T. 68.3: WITHDRAWN 68.4L: Late-News Paper: Highresolution printing of OLED displays. SID Symp. Dig. Tech. Pap.2012, 43, 929–932.

    Google Scholar 

  18. Gensler, M.; Boeffel, C.; Kröpke, S.; Kronemeijer, A. J.; Ke, T. H.; Papadopoulos, N.; Yao, J.; Stark, J.; Obene, P. 82-5: Late-News Paper: High-resolution printing for future processing of RGB OLED displays. SID Symp. Dig. Tech. Pap.2018, 49, 1117–1119.

    CAS  Google Scholar 

  19. Lee, M. T.; Shen, S. M.; Weng, Z. X.; Fu, J. J.; Chen, C. L.; Chuang, C. S.; Lin, Y. 40.3: One FMM solution for achieving active-matrix OLED with 413 ppi real pixel density. SID Symp. Dig. Tech. Pap.2014, 45, 573–575.

    Google Scholar 

  20. Lih, J. J.; Chao, C. I.; Lee, C. C. 40.4: Invited Paper: The challenge of high resolution to active-matrix OLED. SID Symp. Dig. Tech. Pap.2006, 37, 1459–1462.

    Google Scholar 

  21. Jeon, C. W.; Kim, K. S.; Dawson, M. D. Fabrication of two-dimensional InGaN-based micro-LED arrays. Phys. Status Solidi (A) 2002, 192, 325–328.

    CAS  Google Scholar 

  22. Li, D.; Kristal, B.; Wang, Y. J.; Feng, J. W.; Lu, Z. G.; Yu, G.; Chen, Z.; Li, Y. Z.; Li, X. G.; Xu, X. G. Enhanced efficiency of InP-based red quantum dot light-emitting diodes. ACS Appl. Mater. Interfaces2019, 11, 34067–34075.

    CAS  Google Scholar 

  23. Sabeeh, A.; Thakur, Y.; Ruzyllo, J. Lift-off patterning of nano-crystalline quantum dot films. ECS Trans.2015, 69, 53–57.

    CAS  Google Scholar 

  24. Li, Y.; Hou, X. Q.; Dai, X. L.; Yao, Z. L.; Lv, L. L.; Jin, Y. Z.; Peng, X. G. Stoichiometry-controlled InP-based quantum dots: Synthesis, photoluminescence, and electroluminescence. J. Am. Chem. Soc.2019, 141, 6448–6452.

    CAS  Google Scholar 

  25. Coe, S.; Woo, W. K.; Bawendi, M.; Bulovic, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature2002, 420, 800–803.

    CAS  Google Scholar 

  26. Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature1994, 370, 354–357.

    CAS  Google Scholar 

  27. Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature2014, 515, 96–99.

    CAS  Google Scholar 

  28. Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature2019, 575, 634–638.

    CAS  Google Scholar 

  29. Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z. Q.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics2013, 7, 407–412.

    CAS  Google Scholar 

  30. Ding, K.; Fang, Y. S.; Dong, S. H.; Chen, H. T.; Luo, B. B.; Jiang, K.; Gu, H. G.; Fan, L. W.; Liu, S. Y.; Hu, B. et al. 24.1% external quantum efficiency of flexible quantum dot light-emitting diodes by light extraction of silver nanowire transparent electrodes. Adv. Opt. Mater.2018, 6, 1800347.

    Google Scholar 

  31. Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. G.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics2019, 13, 192–197.

    CAS  Google Scholar 

  32. Wang, L. S.; Lin, J.; Hu, Y. S.; Guo, X. Y.; Lv, Y.; Tang, Z. B.; Zhao, J. L.; Fan, Y.; Zhang, N.; Wang, Y. J. et al. Blue quantum dot light-emitting diodes with high electroluminescent efficiency. ACS Appl. Mater. Interfaces2017, 9, 38755–38760.

    CAS  Google Scholar 

  33. Cao, W. R.; Xiang, C. Y.; Yang, Y. X.; Chen, Q.; Chen, L. W.; Yan, X. L.; Qian, L. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun.2018, 9, 2608.

    Google Scholar 

  34. Kim, B. H.; Onses, M. S.; Lim, J. B.; Nam, S.; Oh, N.; Kim, H.; Yu, K. J.; Lee, J. W.; Kim, J. H.; Kang, S. K. et al. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Lett.2015, 15, 969–973.

    CAS  Google Scholar 

  35. Jiang, C. B.; Mu, L.; Zou, J. H.; He, Z. W.; Zhong, Z. J.; Wang, L.; Xu, M.; Wang, J.; Peng, J. B.; Cao, Y. Full-color quantum dots active matrix display fabricated by ink-jet printing. Sci. China Chem.2017, 60, 1349–1355.

    CAS  Google Scholar 

  36. Jiang, C. B.; Zhong, Z. M.; Liu, B. Q.; He, Z. W.; Zou, J. H.; Wang, L.; Wang, J.; Peng, J. B.; Cao, Y. Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices. ACS Appl. Mater. Interfaces2016, 8, 26162–26168.

    CAS  Google Scholar 

  37. Kim, L.; Anikeeva, P. O.; Coe-Sullivan, S. A.; Steckel, J. S.; Bawendi, M. G.; Bulovic, V. Contact printing of quantum dot light-emitting devices. Nano Lett.2008, 8, 4513–4517.

    CAS  Google Scholar 

  38. Kim, T. H.; Cho, K. S.; Lee, E. K.; Lee, S. J.; Chae, J.; Kim, J. W.; Kim, D. H.; Kwon, J. Y.; Amaratunga, G.; Lee, S. Y. et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics2011, 5, 176–182.

    CAS  Google Scholar 

  39. Choi, M. K.; Yang, J.; Kang, K.; Kim, D. C.; Choi, C.; Park, C.; Kim, S. J.; Chae, S. I.; Kim, T. H.; Kim, J. H. et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun.2015, 6, 7149.

    CAS  Google Scholar 

  40. Kim, B. H.; Nam, S.; Oh, N.; Cho, S. Y.; Yu, K. J.; Lee, C. H.; Zhang, J. Q.; Deshpande, K.; Trefonas, P.; Kim, J. H. et al. Multilayer transfer printing for pixelated, multicolor quantum dot light-emitting diodes. ACS Nano2016, 10, 4920–4925.

    CAS  Google Scholar 

  41. Li, Y. Z.; Chen, Z.; Kristal, B.; Zhang, Y. M.; Li, D.; Yu, G.; Wang, X. Y.; Wang, L.; Shi, Y. M.; Wang, Z. L. et al. 80 - 1: Invited Paper: Developing AMQLED technology for display applications. SID Symp. Dig. Tech. Pap.2018, 49, 1076–1079.

    CAS  Google Scholar 

  42. Pickering, S.; Kshirsagar, A.; Ruzyllo, J.; Xu, J. Patterned mist deposition of tri-colour CdSe/ZnS quantum dot films toward RGB LED devices. Opto-Electron. Rev.2012, 20, 148–152.

    CAS  Google Scholar 

  43. Wang, J.; Wang, C. F.; Shen, H. X.; Chen, S. Quantum-dot-embedded ionomer-derived films with ordered honeycomb structures via breath figures. Chem. Commun.2010, 46, 7376–7378.

    CAS  Google Scholar 

  44. Kwon, J. H.; Ji, S. H.; Han, S. H.; Kwak, M. S.; Jun, M.; Kang, I. B. P-184: Improvement of color mixing in high PPI mobile displays. SID Symp. Dig. Tech. Pap.2016, 47, 1830–1833.

    CAS  Google Scholar 

  45. Oh, S. D.; Kim, J.; Lee, D. H.; Kim, J. H.; Jang, C. W.; Kim, S.; Choi, S. H. Structural and optical characteristics of graphene quantum dots size-controlled and well-aligned on a large scale by polystyrenenanosphere lithography. J. Phys. D. Appl. Phys.2015, 49, 025308.

    Google Scholar 

  46. Hayashi, T.; Shibata, T.; Kawashima, T.; Makino, E.; Mineta, T.; Masuzawa, T. Photolithography system with liquid crystal display as active gray-tone mask for 3D structuring of photoresist. Sens. Actuators A Phys.2008, 144, 381–388.

    CAS  Google Scholar 

  47. Njo, S. L.; van Asselt, R.; Broer, D. J.; de Witz, C. M. R. 23. 3: 23.3: Light-efficient liquid crystal displays using photoluminescent color filters. SID Symp. Dig. Tech. Pap.2000, 31, 343–345.

    Google Scholar 

  48. Ko, F. J.; Shieh, H. P. D. High-efficiency micro-optical color filter for liquid-crystal projection system applications. Appl. Opt.2000, 39, 1159–1163.

    CAS  Google Scholar 

  49. Wang, Y. Y.; Pan, J. A.; Wu, H. Q.; Talapin, D. V. Direct wavelength-selective optical and electron-beam lithography of functional inorganic nanomaterials. ACS Nano2019, 13, 13917–13931.

    CAS  Google Scholar 

  50. Wang, Y. Y.; Fedin, I.; Zhang, H.; Talapin, D. V. Direct optical lithography of functional inorganic nanomaterials. Science2017, 357, 385–388.

    CAS  Google Scholar 

  51. Hahm, D.; Park, J.; Jeong, I.; Rhee, S.; Lee, T.; Lee, C.; Chung, S.; Bae, W. K.; Lee, S. Surface engineered colloidal quantum dots for complete green process. ACS Appl. Mater. Interfaces2020, 12, 10563–10570.

    Google Scholar 

  52. Kang, H. L.; Kang, J. G.; Won, J. K.; Jung, S. M.; Kim, J.; Park, C. H.; Ju, B. K.; Kim, M. G.; Park, S. K. Spatial light patterning of full color quantum dot displays enabled by locally controlled surface tailoring. Adv. Opt. Mater.2018, 6, 1701335.

    Google Scholar 

  53. Ji, T. J.; Jin, S.; Zhang, H.; Chen, S. M.; Sun, X. W. Full color quantum dot light-emitting diodes patterned by photolithography technology. J. Soc. Inf. Disp.2018, 26, 121–127.

    CAS  Google Scholar 

  54. Müller, C. D.; Falcou, A.; Reckefuss, N.; Rojahn, M.; Wiederhirn, V.; Rudati, P.; Frohne, H.; Nuyken, O.; Becker, H.; Meerholz, K. Multi-colour organic light-emitting displays by solution processing. Nature2003, 421, 829–833.

    Google Scholar 

  55. Krotkus, S.; Ventsch, F.; Kasemann, D.; Zakhidov, A. A.; Hofmann, S.; Leo, K.; Gather, M. C. Photo-patterning of highly efficient state-of-the-art phosphorescent OLEDs using orthogonal hydrofluoroethers. Adv. Opt. Mater.2014, 2, 1043–1048.

    CAS  Google Scholar 

  56. Dong, Y. F.; Fang, Z. Q.; Look, D. C.; Doutt, D. R.; Cantwell, G.; Zhang, J.; Song, J. J.; Brillson, L. J. Defects at oxygen plasma cleaned ZnO polar surfaces. J. Appl. Phys.2010, 108, 103718.

    Google Scholar 

  57. Liu, L. S.; Mei, Z. X.; Tang, A. H.; Azarov, A.; Kuznetsov, A.; Xue, Q. K.; Du, X. L. Oxygen vacancies: The origin of n-type conductivity in ZnO. Phys. Rev. B2016, 93, 235305.

    Google Scholar 

  58. Lee, H. S.; Kim, D.; Han, J. H.; Lee, T. W.; Lee, S.; Jeon, D. Y.; Choi, K. C. Efficient quantum dot light-emitting diodes by reducing oxygen vacancies of ZnO nanoparticles with recycling process. SID Symp. Dig. Tech. Pap.2019, 50, 1666–1668.

    CAS  Google Scholar 

  59. Milleville, C. C.; Pelcher, K. E.; Sfeir, M. Y.; Banerjee, S.; Watson, D. F. Directional charge transfer mediated by mid-gap states: A transient absorption spectroscopy study of CdSe quantum dot/β-Pb0.33V2O5 heterostructures. J. Phys. Chem. C2016, 120, 5221–5232.

    CAS  Google Scholar 

  60. Nagpal, P.; Klimov, V. I. Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films. Nat. Commun.2011, 2, 486.

    Google Scholar 

  61. Bartnik, A. C.; Efros, A. L.; Koh, W. K.; Murray, C. B.; Wise, F. W. Electronic states and optical properties of PbSe nanorods and nanowires. Phys. Rev. B2010, 82, 195313.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2016YFB0401700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuo Chen, Yanzhao Li, Xinguo Li or Xiaoguang Xu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, W., Zhang, Z., Zhang, A. et al. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach. Nano Res. 13, 2485–2491 (2020). https://doi.org/10.1007/s12274-020-2883-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2883-9

Keywords

Navigation