Skip to main content
Log in

Ag doped urchin-like α-MnO2 toward efficient and bifunctional electrocatalysts for Li-O2 batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Rechargeable Li-O2 batteries (LOBs) have been receiving intensive attention because of their ultra-high theoretical energy density close to the gasoline. Herein, Ag modified urchin-like α-MnO2 (Ag-MnO2) material with hierarchical porous structure is obtained by a facile one-step hydrothermal method. Ag-MnO2 possesses thick nanowires and presents hierarchical porous structure of mesopores and macropores. The unique structure can expose more active sites, and provide continuous pathways for O2 and discharge products as well. The doping of Ag leads to the change of electronic distribution in a-MnO2 (i.e., more oxygen vacancies), which play important roles in improving their intrinsic catalytic activity and conductivity. As a result, LOBs with Ag-MnO2 catalysts exhibit lower overpotential, higher discharge specific capacity and much better cycle stability compared to pure α-MnO2. LOBs with Ag-MnO2 catalysts exhibit a superior discharge specific capacity of 13,131 mAhg−1 at a current density of 200 mAg−1, a good cycle stability of 500 cycles at the capacity of 500 mAhg−1. When current density is increased to 400 mAg−1, LOBs still retain a long lifespan of 170 cycles at a limited capacity of 1,000 mAhg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ye, M. H.; Zhang, Z. P.; Zhao, Y.; Qu, L. T. Graphene platforms for smart energy generation and storage. Joule2018, 2, 245–268.

    CAS  Google Scholar 

  2. Aurbach, D.; McCloskey, B. D.; Nazar, L. F.; Bruce, P. G. Advances in understanding mechanisms underpinning lithium-air batteries. Nat. Energy2016, 1, 16128.

    CAS  Google Scholar 

  3. Sun, Q.; Li, D. P.; Cheng, J.; Dai, L. N.; Guo, J. G; Liang, Z.; Ci, L. J. Nitrogen-doped carbon derived from pre-oxidized pitch for surface dominated potassium-ion storage. Carbon2019, 155, 601–610.

    CAS  Google Scholar 

  4. Han, M. M.; Huang, J. W.; Liang, S. Q.; Shan, L. T.; Xie, X. S.; Yi, Z. Y.; Wang, Y. R.; Guo, S.; Zhou, J. Oxygen defects in β-MnO2 enabling high-performance rechargeable aqueous zinc/manganese dioxide battery. iScience2020, 23, 100797.

    CAS  Google Scholar 

  5. Long, J. P.; Hou, Z. Q.; Shu, C. Z.; Han, C.; Li, W. J.; Huang, R.; Wang, J. Z. Free-standing three-dimensional CuCo2S4 nanosheet array with high catalytic activity as an efficient oxygen electrode for lithium-oxygen batteries. ACS Appl. Mater. Interfaces.2019, 11, 3834–3842.

    CAS  Google Scholar 

  6. Cao, X. C.; Zheng, X. J.; Sun, Z. H.; Jin, C.; Tian, J. H.; Sun, S. R.; Yang, R. Z. Oxygen defect-ridden molybdenum oxide-coated carbon catalysts for Li-O2 battery cathodes. Appl. Catal. B: Environ.2019, 253, 317–322.

    CAS  Google Scholar 

  7. Jiang, Z. L.; Sun, H.; Shi, W. K.; Zhou, T. H.; Hu, J. Y.; Cheng, J. Y.; Hu, P. F.; Sun, S. G. Co3O4 nanocage derived from metal-organic frameworks: An excellent cathode catalyst for rechargeable Li-O2 battery. Nano Res.2019, 12, 1555–1562.

    CAS  Google Scholar 

  8. Zheng, M. B.; Jiang, J.; Lin, Z. X.; He, P.; Shi, Y.; Zhou, H. S. Stable voltage cutoff cycle cathode with tunable and ordered porous structure for Li-O2 batteries. Small2018, 14, 1803607.

    Google Scholar 

  9. Wang, D.; Mu, X. W.; He, P.; Zhou, H. S. Materials for advanced Li-O2 batteries: Explorations, challenges and prospects. Mater. Today2019, 26, 87–99.

    CAS  Google Scholar 

  10. Cai, Y. C.; Hou, Y. P.; Lu, Y.; Chen, J. Recent progress on catalysts for the positive electrode of aprotic lithium-oxygen batteries. Inorganics2019, 7, 69.

    CAS  Google Scholar 

  11. Li, J. B.; Shu, C. Z.; Hu, A. J.; Ran, Z. Q.; Li, M. L.; Zheng, R. X.; Long, J. P. Tuning oxygen non-stoichiometric surface via defect engineering to promote the catalysis activity of Co3O4 in Li-O2 batteries. Chem. Eng. J.2020, 381, 122678.

    CAS  Google Scholar 

  12. Lu, X. Y.; Hao, G. P.; Sun, X. L.; Kaskel, S.; Schmidt, O. G. Highly dispersed metal and oxide nanoparticles on ultra-polar carbon as efficient cathode materials for Li-O2 batteries. J. Mater. Chem. A2017, 5, 6284–6291.

    CAS  Google Scholar 

  13. Xu, S. M.; Liang, X.; Ren, Z. C.; Wang, K. X.; Chen, J. S. Freestanding air cathodes based on 3D hierarchically porous carbon membranes: Kinetic overpotential of continuous macropores in Li-O2 batteries. Angew. Chem., Int. Ed.2018, 57, 6825–6829.

    CAS  Google Scholar 

  14. Wang, J. J.; Li, Y. L.; Sun, X. L. Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries. Nano Energy2013, 2, 443–467.

    Google Scholar 

  15. Jung, J. W.; Jang, J. S.; Yun, T. G.; Yoon, K. R.; Kim, I. D. Three-dimensional nanofibrous air electrode assembled with carbon nanotubes-bridged hollow Fe2O3 nanoparticles for high-performance lithium-oxygen batteries. ACS. Appl. Mater. Interfaces2018, 10, 6531–6540.

    CAS  Google Scholar 

  16. Wu, F.; Xing, Y.; Zeng, X. Q.; Yuan, Y. F.; Zhang, X. Y.; Shahbazian-Yassar, R.; Wen, J. G; Miller, D. J.; Li, L.; Chen, R. J. et al. Platinum-coated hollow graphene nanocages as cathode used in lithium-oxygen batteries. Adv. Funct. Mater.2016, 26, 7626–7633.

    CAS  Google Scholar 

  17. Jian, Z. L.; Liu, P.; Li, F. J.; He, P.; Guo, X. W.; Chen, M. W.; Zhou, H. S. Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries. Angew. Chem., Int. Ed.2014, 53, 442–446.

    CAS  Google Scholar 

  18. Yin, Y. B.; Xu, J. J.; Liu, Q. C.; Zhang, X. B. Macroporous interconnected hollow carbon nanofibers inspired by golden-toad eggs toward a binder-free, high-rate, and flexible electrode. Adv. Mater.2016, 28, 7494–7500.

    CAS  Google Scholar 

  19. Shen, C.; Wen, Z. Y.; Wang, F.; Wu, T.; Wu, X. W. Cobalt-metal-based cathode for lithium-oxygen battery with improved electrochemical performance. ACS Catal.2016, 6, 4149–4153.

    CAS  Google Scholar 

  20. Zhang, F.; Wei, M. H.; Sui, J.; Jin, C.; Luo, Y.; Bie, S. Y.; Yang, R. Z. Cobalt phosphide microsphere as an efficient bifunctional oxygen catalyst for Li-air batteries. J. Alloy. Compd.2018, 750, 655–658.

    CAS  Google Scholar 

  21. Jung, K. N.; Lee, J. I.; Yoon, S.; Yeon, S. H.; Chang, W.; Shin, K. H.; Lee, J. W. Manganese oxide/carbon composite nanofibers: Electro-spinning preparation and application as a bi-functional cathode for rechargeable lithium-oxygen batteries. J. Mater. Chem.2012, 22, 21845–21848.

    CAS  Google Scholar 

  22. Liu, B.; Sun, Y. L.; Liu, L.; Xu, S.; Yan, X. B. Advances in manganese-based oxides cathodic electrocatalysts for Li-Air batteries. Adv. Funct. Mater.2018, 28, 1704973.

    Google Scholar 

  23. Gong, H.; Wang, T.; Xue, H. R.; Lu, X. Y.; Xia, W.; Song, L.; Zhang, S. T.; He, J. P.; Ma, R. Z. Spatially-controlled porous nanoflake arrays derived from MOFs: An efficiently long-life oxygen electrode. Nano Res.2019, 12, 2528–2534.

    CAS  Google Scholar 

  24. Zhang, S. P.; Wen, Z. Y.; Lu, Y.; Wu, X. W.; Yang, J. H. Highly active mixed-valent MnO, spheres constructed by nanocrystals as efficient catalysts for long-cycle Li-O2 batteries. J. Mater. Chem. A2016, 4, 17129–17137.

    CAS  Google Scholar 

  25. Guo, X.; Zhou, J.; Bai, C. L.; Li, X. K.; Fang, G. Z.; Liang, S. Q. Zn/MnO2 battery chemistry with dissolution-deposition mechanism. Mater. Today Energy2020, 16, 100396.

    Google Scholar 

  26. Débart, A.; Paterson, A. J.; Bao, J. L.; Bruce, P. G. α-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem., Int. Ed.2008, 47, 4521–4524.

    Google Scholar 

  27. Cao, Y.; Wei, Z. K.; He, J.; Zang, J.; Zhang, Q.; Zheng, M. S.; Dong, Q. F. α-MnO2 nanorods grown in situ on graphene as catalysts for Li-O2 batteries with excellent electrochemical performance. Energy Environ. Sci.2012, 5, 9765–9768.

    CAS  Google Scholar 

  28. Zhang, P.; He, M.; Xu, S.; Yan, X. B. The controlled growth of porous 5-MnO2 nanosheets on carbon fibers as a bi-functional catalyst for rechargeable lithium-oxygen batteries. J. Mater. Chem. A2015, 3, 10811–10818.

    CAS  Google Scholar 

  29. Liu, S. Y.; Zhu, Y. G.; Xie, J.; Huo, Y.; Yang, H. Y.; Zhu, T. J.; Cao, G. S.; Zhao, X. B.; Zhang, S. C. Direct growth of flower-like 5-MnO2 on three-dimensional graphene for high-performance rechargeable Li-O2 batteries. Adv. Energy Mater.2014, 4, 1301960.

    Google Scholar 

  30. Gu, T. H.; Agyeman, D. A.; Shin, S. J.; Jin, X. Y.; Lee, J. M.; Kim, H.; Kang, Y. M.; Hwang, S. J. α-MnO2 nanowire-anchored highly oxidized cluster as a catalyst for Li-O2 batteries: Superior electrocatalytic activity and high functionality. Angew. Chem., Int. Ed.2018, 57, 15984–15989.

    CAS  Google Scholar 

  31. Lu, M. H.; Qu, J. L.; Yao, Q. F.; Xu, C. H.; Zhan, Y.; Xie, J. P.; Lee, J. Y. Exploring metal nanoclusters for lithium-oxygen batteries. ACS Appl. Mater. Interfaces2015, 7, 5488–5496.

    CAS  Google Scholar 

  32. Jung, K. N.; Riaz, A.; Lee, S. B.; Lim, T. H.; Park, S. J.; Song, R. H.; Yoon, S.; Shin, K. H.; Lee, J. W. Urchin-like α-MnO2 decorated with Au and Pd as a bi-functional catalyst for rechargeable lithium-oxygen batteries. J. Power Sources2013, 244, 328–335.

    CAS  Google Scholar 

  33. Davis, D. J.; Lambert, T. N.; Vigil, J. A.; Rodriguez, M. A.; Brumbach, M. T.; Coker, E. N.; Limmer, S. J. Role of Cu-ion doping in Cu-α-MnO2 nanowire electrocatalysts for the oxygen reduction reaction. J. Phys. Chem. C2014, 118, 17342–17350.

    CAS  Google Scholar 

  34. Ye, Z. G.; Li, T.; Ma, G.; Dong, Y. H.; Zhou, X. L. Metal-Ion (Fe, V, Co, and Ni)-doped MnO2 ultrathin nanosheets supported on carbon fiber paper for the oxygen evolution reaction. Adv. Funct. Mater.2017, 27, 1704083.

    Google Scholar 

  35. Chen, L.; Chen, L.; Zhai, W.; Li, D. P.; Lin, Y. X.; Guo, S. R.; Feng, J. K.; Zhang, L.; Song, L.; Si, P. C. et al. Tunable synthesis of LixMnO2 nanowires for aqueous Li-ion hybrid supercapacitor with high rate capability and ultra-long cycle life. J. Power Sources2019, 413, 302–309.

    CAS  Google Scholar 

  36. Zhang, J.; Luan, Y. P.; Lyu, Z.; Wang, L. J.; Xu, L. L.; Yuan, K. D.; Pan, F.; Lai, M.; Liu, Z. L.; Chen, W. Synthesis of hierarchical porous 5-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries. Nanoscale2015, 7, 14881–14888.

    CAS  Google Scholar 

  37. Wu, K.; Sun, L. D.; Yan, C. H. Recent progress in well-controlled synthesis of ceria-based nanocatalysts towards enhanced catalytic performance. Adv. Energy Mater.2016, 6, 1600501.

    Google Scholar 

  38. Dong, R. T.; Ye, Q. L.; Kuang, L. L.; Lu, X.; Zhang, Y.; Zhang, X.; Tan, G. J.; Wen, Y. X.; Wang, F. Enhanced supercapacitor performance of Mn3O4 nanocrystals by doping transition-metal ions. ACS Appl. Mater. Interfaces2013, 5, 9508–9516.

    CAS  Google Scholar 

  39. Li, X. P.; Liu, J.; Zhao, Y. H.; Zhang, H. J.; Du, F. P.; Lin, C.; Zhao, T. J.; Sun, Y. H. Significance of surface trivalent manganese in the electrocatalytic activity of water oxidation in undoped and doped MnO2 nanowires. ChemCatChem2015, 7, 1848–1856.

    CAS  Google Scholar 

  40. Duan, Y. P.; Liu, Z.; Jing, H.; Zhang, Y. H.; Li, S. Q. Novel microwave dielectric response of Ni/Co-doped manganese dioxides and their microwave absorbing properties. J. Mater. Chem.2012, 22, 18291–18299.

    CAS  Google Scholar 

  41. Maitra, U.; Naidu, B. S.; Govindaraj, A.; Rao, C. N. Importance of trivalency and the eg1 configuration in the photocatalytic oxidation of water by Mn and Co oxides. Proc. Natl. Acad. Sci. USA2013, 110, 11704–11707.

    CAS  Google Scholar 

  42. Jin, X. Y.; Park, M.; Shin, S. J.; Jo, Y.; Kim, M. G.; Kim, H.; Kang, Y. M.; Hwang, S. J. Synergistic control of structural disorder and surface bonding nature to optimize the functionality of manganese oxide as an electrocatalyst and a cathode for Li-O2 batteries. Small2019, 16, 1903265.

    Google Scholar 

  43. Luo, J.; Zhu, H. T.; Fan, H. M.; Liang, J. K.; Shi, H. L.; Rao, G. H.; Li, J. B.; Du, Z. M.; Shen, Z. X. Synthesis of single-crystal tetragonal α-MnO2 nanotubes. J. Phys. Chem. C2008, 112, 12594–12598.

    CAS  Google Scholar 

  44. Wang, C. X.; Ma, J. Z.; Liu, F. D.; He, H.; Zhang, R. D. The effects of Mn2+ precursors on the structure and ozone decomposition activity of cryptomelane-type manganese oxide (OMS-2) catalysts. J. Phys. Chem. C2015, 119, 23119–23126.

    CAS  Google Scholar 

  45. Deng, H.; Kang, S. Y.; Ma, J. Z.; Zhang, C. B.; He, H. Silver incorporated into cryptomelane-type Manganese oxide boosts the catalytic oxidation of benzene. Appl. Catal. B: Environ.2018, 239, 214–222.

    CAS  Google Scholar 

  46. Park, J.; Jeong, J.; Lee, S.; Jo, C.; Lee, J. Effect of mesoporous structured cathode materials on charging potentials and rate capability of lithium-oxygen batteries. ChemSusChem2015, 8, 3146–3152.

    CAS  Google Scholar 

  47. Olivares-Marín, M.; Palomino, P.; Enciso, E.; Tonti, D. Simple method to relate experimental pore size distribution and discharge capacity in cathodes for Li/O2 batteries. J. Phys. Chem. C2014, 118, 20772–20783.

    Google Scholar 

  48. Cao, Y.; Lu, H. M.; Hong, Q. S.; Xu, B. B.; Wang, J. R.; Deng, Y.; Yang, W. W.; Cai, W. Synthesis of Ag/Co@CoO NPs anchored within N-doped hierarchical porous hollow carbon nanofibers as a superior free-standing cathode for Li O2 batteries. Carbon2019, 144, 280–288.

    CAS  Google Scholar 

  49. Gao, R.; Yang, Z. Z.; Zheng, L. R.; Gu, L.; Liu, L.; Lee, Y.; Hu, Z. B.; Liu, X. F. Enhancing the catalytic activity of Co3O4 for Li-O2 batteries through the synergy of surface/interface/doping engineering. ACS Catal.2018, 8, 1955–1963.

    CAS  Google Scholar 

  50. Li, J. B.; Shu, C. Z.; Ran, Z. Q.; Li, M. L.; Zheng, R. X.; Long, J. P. Heteroatom-induced electronic structure modulation of vertically oriented oxygen vacancy-rich NiFe layered double oxide nanoflakes to boost bifunctional catalytic activity in Li-O2 battery. ACS Appl. Mater. Interfaces2019, 11, 29868–29878.

    CAS  Google Scholar 

  51. Liu, W. J.; Bao, J.; Xu, L.; Guan, M. L.; Wang, Z. L.; Qiu, J. X.; Huang, Y. P.; Xia, J. X.; Lei, Y. C.; Li, H. M. NiCo2O4 ultrathin nanosheets with oxygen vacancies as bifunctional electrocatalysts for Zn-air battery. Appl. Surf. Sci.2019, 478, 552–559.

    CAS  Google Scholar 

  52. Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed.2015, 54, 7399–7404.

    CAS  Google Scholar 

  53. Xu, J. J.; Liu, Q. C.; Yu, Y.; Wang, J.; Yan, J. M.; Zhang, X. B. In situ construction of stable tissue-directed/reinforced bifunctional separator/protection film on lithium anode for lithium-oxygen batteries. Adv. Mater.2017, 29, 1606552.

    Google Scholar 

  54. Yin, J.; Carlin, J. M.; Kim, J.; Li, Z.; Park, J. H.; Patel, B.; Chakrapani, S.; Lee, S.; Joo, Y. L. Synergy between metal oxide nanofibers and graphene nanoribbons for rechargeable lithium-oxygen battery cathodes. Adv. Energy Mater.2015, 5, 1401412.

    Google Scholar 

  55. Dai, L. N.; Sun, Q.; Guo, J. G.; Cheng, J.; Xu, X. Y.; Guo, H. H.; Li, D. P.; Chen, L.; Si, P. C.; Lou, J. et al. Mesoporous Mn2O3 rods as a highly efficient catalyst for Li-O2 battery. J. Power Sources2019, 435, 226833.

    CAS  Google Scholar 

  56. Kundu, D.; Black, R.; Berg, E. J.; Nazar, L. F. A highly active nanostructured metallic oxide cathode for aprotic Li-O2 batteries. Energy Environ. Sci.2015, 8, 1292–1298.

    CAS  Google Scholar 

  57. Ghouri, Z. K.; Zahoor, A.; Barakat, N. A. M.; Alsoufi, M. S.; Bawazeer, T. M.; Mohamed, A. F.; Kim, H. Y. The (2×2) tunnels structured manganese dioxide nanorods with a phase for lithium air batteries. Superlattices Microstruct.2016, 90, 184–190.

    CAS  Google Scholar 

  58. Zahoor, A.; Jang, H. S.; Jeong, J. S.; Christy, M.; Hwang, Y. J.; Nahm, K. S. A comparative study of nanostructured α and 5 MnO2 for lithium oxygen battery application. RSC Adv.2014, 4, 8973–8977.

    CAS  Google Scholar 

  59. Jang, H.; Zahoor, A.; Kim, Y.; Christy, M.; Oh, M. Y.; Aravindan, V.; Lee, Y. S.; Nahm, K. S. Tailoring three dimensional α-MnO2/RuO2 hybrid nanostructure as prospective bifunctional catalyst for Li-O2 batteries. Electrochim. Acta2016, 212, 701–709.

    CAS  Google Scholar 

  60. Salehi, M.; Shariatinia, Z. Synthesis of star-like MnO2-CeO2/CNT composite as an efficient cathode catalyst applied in lithium-oxygen batteries. Electrochim. Acta2016, 222, 821–829.

    CAS  Google Scholar 

  61. Bi, R.; Liu, G. X.; Zeng, C.; Wang, X. P.; Zhang, L.; Qiao, S. Z. 3D hollow α-MnO2 framework as an efficient electrocatalyst for lithium-oxygen batteries. Small2019, 15, 1804958.

    Google Scholar 

  62. Qin, Y.; Lu, J.; Du, P.; Chen, Z. H.; Ren, Y.; Wu, T. P.; Miller, J. T.; Wen, J. G.; Miller, D. J.; Zhang, Z. C. et al. In situ fabrication of porous-carbon-supported a-MnO2 nanorods at room temperature: Application for rechargeable Li-O2 batteries. Energy Environ. Sci.2013, 6, 519–531.

    CAS  Google Scholar 

  63. Kim, B. G.; Jo, C.; Shin, J.; Mun, Y.; Lee, J.; Choi, J. W. Ordered mesoporous titanium nitride as a promising carbon-free cathode for aprotic lithium-oxygen batteries. ACS Nano2017, 11, 1736–1746.

    CAS  Google Scholar 

  64. Wu, H. T.; Sun, W.; Shen, J. R.; Lu, C. Y.; Wang, Y. H.; Wang, Z. H.; Sun, K. N. Improved structural design of single- and double-wall MnCo2O4 nanotube cathodes for long-life Li-O2 batteries. Nanoscale2018, 10, 13149–13158.

    CAS  Google Scholar 

  65. Adams, B. D.; Radtke, C.; Black, R.; Trudeau, M. L.; Zaghib, K.; Nazar, L. F. Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge. Energy Environ. Sci.2013, 6, 1772–1778.

    CAS  Google Scholar 

  66. Jung, J. W.; Cho, S. H.; Nam, J. S.; Kim, I. D. Current and future cathode materials for non-aqueous Li-air (O2) battery technology—A focused review. Energy Storage Mater.2020, 24, 512–528.

    Google Scholar 

  67. Li, F. J.; Chen, J. Mechanistic evolution of aprotic lithium-oxygen batteries. Adv. Energy Mater.2017, 7, 1602934.

    Google Scholar 

  68. Lim, H. D.; Lee, B.; Bae, Y.; Park, H.; Ko, Y.; Kim, H.; Kim, J.; Kang, K. Reaction chemistry in rechargeable Li-O2 batteries. Chem. Soc. Rev.2017, 46, 2873–2888.

    CAS  Google Scholar 

  69. Yang, C. Z.; Wong, R. A.; Hong, M.; Yamanaka, K.; Ohta, T.; Byon, H. R. Unexpected Li2O2 film growth on carbon nanotube electrodes with CeO2 nanoparticles in Li-O2 batteries. Nano Lett.2016, 16, 2969–2974.

    CAS  Google Scholar 

  70. Dutta, A.; Wong, R. A.; Park, W.; Yamanaka, K.; Ohta, T.; Jung, Y.; Byon, H. R. Nanostructuring one-dimensional and amorphous lithium peroxide for high round-trip efficiency in lithium-oxygen batteries. Nat. Commun.2018, 9, 680.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by High-level Talents’ Discipline Construction Fund of Shandong University (No. 31370089963078), Shandong Provincial Science and Technology Major Project (Nos. 2016GGX104001, 2017CXGC1010, and 2018JMRH0211), the Fundamental Research Funds of Shandong University (Nos. 2016JC005, 2017JC042 and 2017JC010), and the Natural Science Foundation of Shandong Province (No. ZR2017MEM002), School Research Startup Expenses of Harbin Institute of Technology (Shenzhen) (No. DD29100027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lina Chen, Jun Lou or Lijie Ci.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, L., Sun, Q., Chen, L. et al. Ag doped urchin-like α-MnO2 toward efficient and bifunctional electrocatalysts for Li-O2 batteries. Nano Res. 13, 2356–2364 (2020). https://doi.org/10.1007/s12274-020-2855-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2855-0

Keywords

Navigation