Skip to main content
Log in

Adaptive Task Offloading in Vehicular Edge Computing Networks: a Reinforcement Learning Based Scheme

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

In recent years, with the rapid development of Internet of Things (IoTs) and artificial intelligence, vehicular networks have transformed from simple interactive systems to smart integrated networks. The accompanying intelligent connected vehicles (ICVs) can communicate with each other and connect to the urban traffic information network, to support intelligent applications, i.e., autonomous driving, intelligent navigation, and in-vehicle entertainment services. These applications are usually delay-sensitive and compute-intensive, with the result that the computation resources of vehicles cannot meet the quality requirements of service for vehicles. To solve this problem, vehicular edge computing networks (VECNs) that utilize mobile edge computing offloading technology are seen as a promising paradigm. However, existing task offloading schemes lack consideration of the highly dynamic feature of vehicular networks, which makes them unable to give time-varying offloading decisions for dynamic changes in vehicular networks. Meanwhile, the current mobility model cannot truly reflect the actual road traffic situation. Toward this end, we study the task offloading problem in VECNs with the synchronized random walk model. Then, we propose a reinforcement learning-based scheme as our solution, and verify its superior performance in processing delay reduction and dynamic scene adaptability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Al-fuqaha A, Guizani M, Mohammadi M, et al. (2015) Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun Surv Tutorials 17(4):2347–2376. https://doi.org/10.1109/COMST.2015.2444095

    Article  Google Scholar 

  2. Siegel JE, Erb DC, Sarma SE (2018) A survey of the connected vehicle Landscape-Architectures, enabling technologies, applications, and development areas. IEEE Trans Intell Transp Syst 19(8):2391–2406. https://doi.org/10.1109/TITS.2017.2749459

    Article  Google Scholar 

  3. Khelifi H, Luo S, Nour B et al (2019) Named Data Networking in Vehicular Ad hoc Networks: State-of-the-Art and Challenges

  4. Zhang J, Wang F, Wang K, et al. (2011) Data-Driven Intelligent transportation systems: a survey. IEEE Trans Intell Transp Syst 12:1624–1639. https://doi.org/10.1109/TITS.2011.2158001

    Article  Google Scholar 

  5. Han S, Huang Y, Meng W, et al (2019) Optimal power allocation for SCMA downlink systems based on maximum capacity. IEEE Trans Commun 67(2):1480–1489. https://doi.org/10.1109/TCOMM.2018.2877671

    Article  Google Scholar 

  6. Zhang K, Mao Y, Leng S, et al (2016) Delay constrained offloading for mobile edge computing in Cloud-Enabled vehicular networks. In: Proc 2016 8th Int Work Resilient Networks Des Model RNDM, vol 2016, pp 288–294, https://doi.org/10.1109/RNDM.2016.7608300

  7. Guo H, Zhang J, Liu J (2019) Fiwi-enhanced Vehicular Edge Computing networks: Collaborative Task Offloading. IEEE Veh Technol Mag 14(1):45–53. https://doi.org/10.1109/MVT.2018.2879537

    Article  Google Scholar 

  8. Bisio I, Garibotto C, Lavagetto F, et al. (2019) Blind detection: Advanced Techniques for WiFi-Based Drone Surveillance. IEEE Trans Veh Technol 68(1):938–946. https://doi.org/10.1109/TVT.2018.2884767

    Article  Google Scholar 

  9. Sun F, Hou F, Cheng N, et al. (2018) Cooperative task scheduling for computation offloading in vehicular cloud. IEEE Trans Veh Technol 67(11):11049–11061. https://doi.org/10.1109/TVT.2018.2868013

    Article  Google Scholar 

  10. Guo H, Liu J, Zhang J (2018) Computation offloading for Multi-Access mobile edge computing in Ultra-Dense networks. IEEE Commun Mag 56(8):14–19. https://doi.org/10.1109/MCOM.2018.1701069

    Article  Google Scholar 

  11. Guo H, Liu J, Zhang J (2018) Mobile-edge Computation Offloading for Ultradense IoT Networks. IEEE Internet Things J 5(6):4977–4988. https://doi.org/10.1109/JIOT.2018.2838584

    Article  Google Scholar 

  12. Mach P, Becvar Z (2017) Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun Surv Tutorials 19(3):1628–1656. https://doi.org/10.1109/COMST.2017.2682318

    Article  Google Scholar 

  13. Han S, Li Y, Meng W, et al. (2019) Indoor localization with a single Wi-Fi access point based on OFDM-MIMO. IEEE Syst J 13(1):964–972. https://doi.org/10.1109/JSYST.2018.2823358

    Article  Google Scholar 

  14. Qiao G, Leng S, Zhang K, He Y (2018) Collaborative task offloading in vehicular edge Multi-Access networks. IEEE Commun Mag 56(8):48–54. https://doi.org/10.1109/MCOM.2018.1701130

    Article  Google Scholar 

  15. Liu Y, Wang S, Huang J, Yang F (2018) A computation offloading algorithm based on game theory for vehicular edge networks

  16. Du J, Yu FR, Chu X, et al. (2019) Computation offloading and resource allocation in vehicular networks based on Dual-Side cost minimization. IEEE Trans Veh Technol 68(2):1079–1092. https://doi.org/10.1109/TVT.2018.2883156

    Article  Google Scholar 

  17. Wang K, Yin H, Quan W, Min G (2018) Enabling collaborative edge computing for software defined vehicular networks. IEEE Netw 32(5):112–117. https://doi.org/10.1109/MNET.2018.1700364

    Article  Google Scholar 

  18. Zhao J, Li Q, Gong Y, Zhang K (2019) Computation offloading and resource allocation for cloud assisted mobile edge computing. IEEE Trans Veh Technol 68(8):7944–7956. https://doi.org/10.1109/TVT.2019.2917890

    Article  Google Scholar 

  19. Serra J, Sanabria-russo L, Pubill D, Verikoukis C (2018) Scalable and Flexible IoT Data Analytics: When Machine Learning Meets SDN and Virtualization. In: 2018 IEEE 23rd Int Work Comput Aided Model Des Commun Links Networks 1–6

  20. Ye H, Liang L, Li GY, et al. (2018) Machine learning for vehicular networks: recent advances and application examples. IEEE Veh Technol Mag 13(2):94–101. https://doi.org/10.1109/MVT.2018.2811185

    Article  Google Scholar 

  21. Taherkhani N, Pierre S (2016) Centralized and localized data congestion control strategy for vehicular ad hoc networks using a machine learning clustering algorithm. IEEE Trans Intell Transp Syst 17 (11):3275–3285. https://doi.org/10.1109/TITS.2016.2546555

    Article  Google Scholar 

  22. Zhang Z, Mao G, Member S, et al. (2014) Stochastic Characterization of Information Propagation Process in Vehicular Ad hoc Networks. IEEE Trans Intell Transp Syst 15(1):122–135. https://doi.org/10.1109/TITS.2013.2274274

    Article  Google Scholar 

  23. Zarei M, Rahmani AM (2017) Analysis of vehicular mobility in a dynamic Free-Flow highway. Veh Commun 7:51–57. https://doi.org/10.1016/j.vehcom.2016.12.001

    Article  Google Scholar 

  24. Wang S, Zhang X, Zhang Y, et al. (2017) A survey on mobile edge networks: convergence of computing, caching and communications. IEEE Access 5:6757–6779. https://doi.org/10.1109/ACCESS.2017.2685434

    Article  Google Scholar 

  25. Ning Z, Dong P, Kong X, Xia F (2019) A cooperative partial computation offloading scheme for mobile edge computing enabled internet of things. IEEE Internet Things J 6(3):4804–4814. https://doi.org/10.1109/JIOT.2018.2868616

    Article  Google Scholar 

  26. You C, Huang K, Chae H, Kim BH (2017) Energy-Efficient Resource allocation for Mobile-Edge computation offloading. IEEE Trans Wirel Commun 16 (3):1397–1411. https://doi.org/10.1109/TWC.2016.2633522

    Article  Google Scholar 

  27. Guo H, Liu J (2018) Collaborative computation offloading for multiaccess edge computing over Fiber-Wireless networks. IEEE Trans Veh Technol 67(5):4514–4526. https://doi.org/10.1109/TVT.2018.2790421

    Article  Google Scholar 

  28. Sun Y, Member S, Guo X, Song J (2019) Adaptive Learning-Based task offloading for vehicular edge computing systems. IEEE Trans Veh Technol 68(4):3061–3074. https://doi.org/10.1109/TVT.2019.2895593

    Article  Google Scholar 

  29. Cao Y, Zhang L, Liao J (2019) Knowledge-Driven Service offloading decision for vehicular edge computing: a deep reinforcement learning approach. IEEE Trans Veh Technol 68(5):4192–4203. https://doi.org/10.1109/TVT.2019.2894437

    Article  Google Scholar 

  30. Yousefi S, Altman E, El-Azouzi R, Fathy M (2008) Analytical model for connectivity in vehicular Ad Hoc networks. IEEE Trans Veh Technol 57(6):3341–3356. https://doi.org/10.1109/TVT.2008.2002957

    Article  Google Scholar 

  31. Han S, Zhang Y, Meng W, et al (2019) Full-Duplex Relay-Assisted Macrocell with millimeter wave backhauls: framework and prospects. IEEE Netw 33(5):190–197. https://doi.org/10.1109/MNET.2019.1800305

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (61771374, 61771373, 61801360, and 61601357), in part by Natural Science Basic Research Program of Shaanxi (2020JC-15 and 2020JM-109), in part by Fundamental Research Funds for the Central Universities (3102019PY005, 31020190QD040, and 31020200QD010), in part by Special Funds for Central Universities Construction of World-Class Universities (Disciplines) and Special Development Guidance (06390-20GH020114), and in part by China 111 Project (B16037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajia Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Guo, H. & Liu, J. Adaptive Task Offloading in Vehicular Edge Computing Networks: a Reinforcement Learning Based Scheme. Mobile Netw Appl 25, 1736–1745 (2020). https://doi.org/10.1007/s11036-020-01584-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-020-01584-6

Keywords

Navigation