Skip to main content
Log in

Entropy and Information Content of Geostatistical Models

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

Geostatistical models quantify spatial relations between model parameters and can be used to estimate and simulate properties away from known observations. The underlying statistical model, quantified through a joint probability density, most often consists of both an assumed statistical model and the specific choice of algorithm, including tuning parameters controlling the algorithm. Here, a theory is developed that allows one to compute the entropy of the underlying multivariate probability density when sampled using sequential simulation. The self-information of a single realization can be computed as the sum of the conditional self-information. The entropy is the average of the self-information obtained for many independent realizations. For discrete probability mass functions, a measure of the effective number of free model parameters, implied by a specific choice of probability mass function, is proposed. Through a few examples, the entropy measure is used to quantify the information content related to different choices of simulation algorithms and tuning parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed NA, Gokhale D (1989) Entropy expressions and their estimators for multivariate distributions. IEEE Trans Inf Theory 35(3):688–692

    Article  Google Scholar 

  • Barfod AA, Møller I, Christiansen AV, Høyer AS, Hoffimann J, Straubhaar J, Caers J (2018) Hydrostratigraphic modeling using multiple-point statistics and airborne transient electromagnetic methods. Hydrol Earth Syst Sci 22(6):3351–3373

    Article  Google Scholar 

  • Bruen AA, Forcinito MA (2011) Cryptography, information theory, and error-correction: a handbook for the 21st century, vol 68. Wiley, New York

    Google Scholar 

  • Cordua KS, Hansen TM, Mosegaard K (2015) Improving the pattern reproducibility of multiple-point-based prior models using frequency matching. Math Geosci 47(3):317–343

    Article  Google Scholar 

  • Cover TM, Thomas JA (2012) Elements of information theory. Wiley, New York

    Google Scholar 

  • Daly C (2005) Higher order models using entropy, Markov random fields and sequential simulation. In: Leuangthong O, Deutsch CV (eds) Geostatistics Banff 2004. Springer, Dordrecht, pp 215–224

    Chapter  Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB, geostatistical software library and user’s guide. Applied geostatistics, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Devroye L (1986) Non-uniform random variate generation. Springer. 857 pp. ISBN 3-540-96305-7

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Machine Intell 6:721–741

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evalutaion, applied geostatistics series. Oxford University Press, Oxford

    Google Scholar 

  • Goovaerts P (2009) Medical geography: a promising field of application for geostatistics. Math Geosci 41(3):243

    Article  Google Scholar 

  • Guardiano F, Srivastava R (1993) Multivariate geostatistics: beyond bivariate moments. Geostat Troia 1:133–144

    Article  Google Scholar 

  • Hansen TM, Mosegaard K (2008) VISIM: sequential simulation for linear inverse problems. Comput Geosci 34(1):53–76

    Article  Google Scholar 

  • Hansen TM, Mosegaard K, Cordua KS (2008) Using geostatistics to describe complex a priori information for inverse problems. In: 8th international geostatistics congress

  • Hansen TM, Cordua KS, Looms MC, Mosegaard K (2013) SIPPI: a Matlab toolbox for sampling the solution to inverse problems with complex prior information: part 1, methodology. Comput Geosci 52:470–480

    Article  Google Scholar 

  • Hansen TM, Cordua KS, Zunino A, Mosegaard K (2016a) Probabilistic integration of geo-information. In: Moorkamp M, Lelièvre PG, Linde N, Khan A (eds) Integrated imaging of the earth: theory and applications, vol 218. Wiley, New York, pp 93–116

    Chapter  Google Scholar 

  • Hansen TM, Vu LT, Bach T (2016b) MPSLIB: a c++ class for sequential simulation of multiple-point statistical models. SoftwareX 5:127–133

    Article  Google Scholar 

  • Høyer AS, Vignoli G, Hansen TM, Keefer DA, Jørgensen F et al (2017) Multiple-point statistical simulation for hydrogeological models: 3-d training image development and conditioning strategies. Hydrol Earth Syst Sci 21(12):6069

    Article  Google Scholar 

  • Journel AG (1996) Modelling uncertainty and spatial dependence: stochastic imaging. Int J Geogr Inf Syst 10(5):517–522

    Article  Google Scholar 

  • Journel A, Alabert F (1989) Non-Gaussian data expansion in the earth sciences. Terra Nova 1(2):123–134

    Article  Google Scholar 

  • Journel AG, Deutsch CV (1993) Entropy and spatial disorder. Math Geol 25(3):329–355

    Article  Google Scholar 

  • Journel AG, Huijbregts CJ (1978) Mining geostatistics, vol 600. Academic Press, London

    Google Scholar 

  • Laloy E, Hérault R, Jacques D, Linde N (2018) Training-image based geostatistical inversion using a spatial generative adversarial neural network. Water Resour Res 54(1):381–406

    Article  Google Scholar 

  • Liu Y, Journel A (2004) Improving sequential simulation with a structured path guided by information content. Math Geol 36(8):945–964

    Article  Google Scholar 

  • Liu Y, Journel AG (2009) A package for geostatistical integration of coarse and fine scale data. Comput Geosci 35(3):527–547

    Article  Google Scholar 

  • MacKay DJ (2003) Information theory, inference and learning algorithms. Cambridge University Press, Cambridge

    Google Scholar 

  • Mariethoz G, Caers J (2014) Multiple-point geostatistics algorithms. In: Mariethoz G, Caers J (eds) Multiple-point geostatistics: stochastic modeling with training images. Wiley, New York, pp 155–171

    Google Scholar 

  • Metropolis N, Rosenbluth M, Rosenbluth A, Teller A, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  Google Scholar 

  • Mustapha H, Dimitrakopoulos R (2011) Hosim: a high-order stochastic simulation algorithm for generating three-dimensional complex geological patterns. Compute Geosci 37(9):1242–1253

    Article  Google Scholar 

  • Oz B, Deutsch CV, Tran TT, Xie Y (2003) DSSIM-HR: a FORTRAN 90 program for direct sequential simulation with histogram reproduction. Comput Geosci 29(1):39–51 (ISSN 0098-3004)

    Article  Google Scholar 

  • Pyrcz MJ, Deutsch CV (2014) Geostatistical reservoir modeling. Oxford University Press, Oxford

    Google Scholar 

  • Renard P, Allard D (2013) Connectivity metrics for subsurface flow and transport. Adv Water Resour 51:168–196

    Article  Google Scholar 

  • Reza FM (1994) An introduction to information theory. Courier Corporation, Chelmsford

    Google Scholar 

  • Shannon CE (2001) (1948) A mathematical theory of communication. ACM SIGMOBILE Mob Comput Commun Rev. Reprint (2001) 5(1):3–55

  • Soares A (2001) Direct sequential simulation and cosimulation. Math Geol 33(8):911–926

    Article  Google Scholar 

  • Straubhaar J, Renard P, Mariethoz G, Froidevaux R, Besson O (2011) An improved parallel multiple-point algorithm using a list approach. Math Geosci 43(3):305–328

    Article  Google Scholar 

  • Strebelle S (2000) Sequential simulation drawing structures from training images. Ph.D. thesis, Stanford University

  • Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34(1):1–20

    Article  Google Scholar 

  • Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. SIAM, Philadelphia (ISBN 0-89871-572-5)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant (#7017-00160B) from the Independent Research Fund Denmark. The author thanks Klaus Mosegaard and Knud Skou Cordua for many valuable discussions on the topic. All computations were performed using MPSlib (Hansen et al. 2016b) and the SIPPI MATLAB package (Hansen et al. 2013). The source code can be found at http://github.com/cultpenguin/sippi/entropy/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mejer Hansen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansen, T.M. Entropy and Information Content of Geostatistical Models. Math Geosci 53, 163–184 (2021). https://doi.org/10.1007/s11004-020-09876-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-020-09876-z

Keywords

Navigation