Skip to main content
Log in

Characteristics and Thermal Shock Resistance of HVOF-Sprayed TiAlNb Coatings

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Two Ti-63.39Al-8.26Nb-0.2Y powders (powder 1 and powder 2) were fabricated by rapid in situ reaction and arc melting, respectively, then deposited on 316L stainless-steel substrate by the high-velocity oxygen fuel (HVOF) process. The phase composition, microstructure, porosity, microhardness, and adhesive strength of the two kinds of coating (DC1 and DC2) were characterized. DC1 had lower porosity, higher microhardness, and higher adhesive strength than DC2, which can be attributed to the difference in particle size distribution and mean particle size; a narrow particle size distribution and suitable mean particle size favor the formation of a HVOF coating with denser and more uniform microstructure. The thermal shock behavior was investigated by heating and water quenching from 600 °C to room temperature. The results showed that the failure of both TiAlNb coatings occurred due to spallation of the top coat, but the thermal shock resistance of DC2 was better than that of DC1. Thermal stress concentration caused by thermal expansion mismatch between the top coat and substrate was recognized as the major reason for TiAlNb coating failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Ma, J. Xing, P. Lyu, Y. Wang, and G. Liu, Multiphase Interface Structure Induced Erosion Resistance of Directional Solidified Fe-B Alloy in Flow Liquid Zinc, Mater. Lett., 2018, 211, p 281-284

    Article  CAS  Google Scholar 

  2. N. Setargew, W.Y. Danielyuen, and J.C. Hodges, Intermetallic Spike Growth Mechanisms in 316L Stainless Steel in Contact with Molten 55%Al-Zn Metal Coating Alloy, Metall. Res. Technol., 2016, 113(4), p 409

    Article  Google Scholar 

  3. X. Fang, Y. Wang, Y. Zhang, S. Feng, J. Du, D. Liu, T. Ouyang, J. Suo, and S. Cai, Improving the Corrosion Resistance of Fe-21Cr-9Mn Alloy in Liquid Zinc by Heat Treatment, Corros. Sci., 2016, 111, p 362-369

    Article  CAS  Google Scholar 

  4. S. Ma, J. Xing, D. Yi, H. Fu, G. Liu, and S. Ma, Microstructure and Corrosion Behavior of Cast Fe-B Alloys Dipped into Liquid Zinc Bath, Mater. Charact., 2010, 61(9), p 866-872

    Article  CAS  Google Scholar 

  5. X. Ren, X. Mei, J. She, and J. Ma, Materials Resistance to Liquid Zinc Corrosion on Surface of Sink Roll, J. Iron Steel Res. Int., 2007, 14(5), p 130-136

    Article  Google Scholar 

  6. J. Xu, M.A. Bright, X. Liu, and E. Barbero, Liquid Metal Corrosion of 316L Stainless Steel, 410 Stainless Steel, and 1015 Carbon Steel in a Molten Zinc Bath, Metall. Mater. Trans. A, 2007, 38(11), p 2727-2736

    Article  Google Scholar 

  7. X. Liu, E. Barbero, J. Xu, M. Burris, K. Chang, and V. Sikka, Liquid Metal Corrosion of 316L, Fe3Al, and FeCrSi in Molten Zn-Al Baths, Metall. Mater. Trans. A, 2005, 36(8), p 2049-2058

    Article  Google Scholar 

  8. J. Zhang, C. Deng, J. Song, C. Deng, M. Liu, and K. Zhou, MoB-CoCr as Alternatives to WC-12Co for Stainless Steel Protective Coating and Its Corrosion Behavior in Molten Zinc, Surf. Coat. Technol., 2013, 235, p 811-818

    Article  CAS  Google Scholar 

  9. B.G. Seong, S.Y. Hwang, M.C. Kim, and K.Y. Kim, Reaction of WC-Co Coating with Molten Zinc in a Zinc Pot of a Continuous Galvanizing Line, Surf. Coat. Technol., 2001, 138(1), p 101-110

    Article  CAS  Google Scholar 

  10. Y. Dong, D. Yan, J. He, J. Zhang, and X. Li, Degradation Behaviour of ZrO2-Ni/Al Gradient Coatings in Molten Zn, Surf. Coat. Technol., 2006, 201(6), p 2455-2459

    Article  CAS  Google Scholar 

  11. S.H. Yao, Y.L. Su, H.Y. Shu, C.I. Lee, and Z.L. You, Comparative Study on Nano-Structural and Traditional Al2O3-13TiO2 Air Plasma Sprayed Coatings and their Thermal Shock Performance, Key Eng. Mater., 2017, 739, p 103-107

    Article  Google Scholar 

  12. G. Zhang, D. Li, N. Zhang, N. Zhang, and S. Duan, Thermal-Sprayed Coatings on Bushing and Sleeve-Pipe Surfaces in Continuous Galvanizing Sinking Roller Production Line Applications, Coatings, 2017, 7(8), p 113

    Article  CAS  Google Scholar 

  13. R.T. Loto and E. Özcan, Corrosion Resistance Studies of Austenitic Stainless Steel Grades in Molten Zinc-Aluminum Alloy Galvanizing Bath, J. Fail. Anal. Prev., 2016, 16(3), p 427-437

    Article  Google Scholar 

  14. Y. Liu, M. Tang, Y. Song, C. Wu, H. Peng, X. Su, and J. Wang, Reactions of FeCr Alloys with Liquid Zinc in Hot-Dip Galvanizing, Surf. Coat. Technol., 2015, 276, p 714-720

    Article  CAS  Google Scholar 

  15. D. Yan, J. He, B. Tian, Y. Dong, X. Li, J. Zhang, L. Xiao, and W. Jing, The Corrosion Behavior of Plasma Sprayed Fe2Al5 Coating in Molten Zn, Surf. Coat. Technol., 2006, 201(6), p 2662-2666

    Article  CAS  Google Scholar 

  16. D. Yan, Y. Yang, Y. Dong, X. Chen, L. Wang, J. Zhang, and J. He, Phase Transitions of Plasma Sprayed Fe-Al Intermetallic Coating During Corrosion in Molten Zinc at 640 °C, Intermetallics, 2012, 22, p 160-165

    Article  CAS  Google Scholar 

  17. R.N. Ma, A. Du, Y.Z. Fan, S.J. Li, and X.M. Cao, Corrosion Behaviour of Stoichiometric Fe3Si Alloy in Liquid Zinc, Corros. Eng. Sci. Technol., 2014, 49(3), p 236-240

    Article  CAS  Google Scholar 

  18. W. Wang, J. Lin, Y. Wang, and G. Chen, Isothermal Corrosion Fe3Si Alloy in Liquid Zinc, J. Univ. Technol. B., 2007, 14(1), p 52-55

    Article  Google Scholar 

  19. J. Wang, H. Tu, B. Peng, X. Wang, F. Yin, and X. Su, The Effects of Zinc Bath Temperature on the Coating Growth Behavior of Reactive Steel, Mater. Charact., 2009, 60(11), p 1276-1279

    Article  CAS  Google Scholar 

  20. J.P. Lin, W.J. Wang, Y.L. Wang, Z. Lin, and G.L. Chen, China patent CHN10011237.5 (2006)

  21. H.J. Zeng, L.Q. Zhang, J.P. Lin, S.J. Zhang, and G.L. Chen, TiAlNb Intermetallic Compound Coating Prepared by High Velocity Oxy-Fuel Spraying, Surf. Coat. Technol., 2011, 206(1), p 178-184

    Article  CAS  Google Scholar 

  22. H.J. Zeng, L.Q. Zhang, J.P. Lin, X.Y. He, Y.C. Zhang, and P. Jia, Influence of Bond Coats on the Microstructure and Mechanical Behaviors of HVOF-Deposited TiAlNb Coatings, J. Therm. Spray Technol., 2012, 21(6), p 1245-1256

    Article  CAS  Google Scholar 

  23. Q. Wang, Z. Chen, L. Li, and G. Yang, The Parameters Optimization and Abrasion Wear Mechanism of Liquid Fuel HVOF Sprayed Bimodal WC-12Co Coating, Surf. Coat. Technol., 2012, 206(8-9), p 2233-2241

    Article  CAS  Google Scholar 

  24. S. Chen, J. Xiang, J. Huang, and X. Zhao, Microstructures and Properties of Double-Ceramic-Layer Thermal Barrier Coatings of La2(Zr0.7Ce0.3)2O7/8YSZ Made by Atmospheric Plasma Spraying, Appl. Surf. Sci., 2015, 340, p 173-181

    Article  CAS  Google Scholar 

  25. M. Zhai, D. Li, Y. Zhao, X. Zhong, F. Shao, H. Zhao, C. Liu, and S. Tao, Comparative Study on Thermal Shock Behavior of Thick Thermal Barrier Coatings Fabricated with Nano-based YSZ Suspension and Agglomerated Particles, Ceram. Int., 2016, 42(10), p 12172-12179

    Article  CAS  Google Scholar 

  26. X. Zhong, H. Zhao, C. Liu, L. Wang, F. Shao, X. Zhou, S. Tao, and C. Ding, Improvement in Thermal Shock Resistance of Gadolinium Zirconate Coating by Addition of Nanostructured Yttria Partially-Stabilized Zirconia, Ceram. Int., 2015, 41(6), p 7318-7324

    Article  CAS  Google Scholar 

  27. B.S. Sidhu, D. Puri, and S. Prakash, Mechanical and Metallurgical Properties of Plasma Sprayed and Laser Remelted Ni-20Cr and Stellite-6 Coatings, J. Mater. Process. Technol., 2015, 159(3), p 347-355

    Article  Google Scholar 

  28. H.S. Sidhu, B.S. Sidhu, and S. Prakash, Mechanical and Microstructural Properties of HVOF Sprayed WC-Co and Cr3C2-NiCr Coatings on the Boiler Tube Steels Using LPG as the Fuel Gas, J. Mater. Process. Technol., 2006, 171(1), p 77-82

    Article  CAS  Google Scholar 

  29. C.R.C. Lima and J.M. Guilemany, Adhesion Improvements of Thermal Barrier Coatings with HVOF Thermally Sprayed Bond Coats, Surf. Coat. Technol., 2007, 201(8), p 4694-4701

    Article  CAS  Google Scholar 

  30. A.C. Karaoglanli, H. Dikici, and Y. Kucuk, Effects of Heat Treatment on Adhesion Strength of Thermal Barrier Coating Systems, Eng. Fail. Anal., 2013, 32, p 16-22

    Article  CAS  Google Scholar 

  31. A.M. Khoddami, A. Sabour, and S.M.M. Hadavi, Microstructure Formation in Thermally-Sprayed Duplex and Functionally Graded NiCrAlY/Yttria-Stabilized Zirconia Coatings, Surf. Coat. Technol., 2007, 201(12), p 6019-6024

    Article  CAS  Google Scholar 

  32. S. Dong, B. Song, G. Zhou, B. Hansz, H. Liao, and C. Coddet, Multi-layered Thermal Barrier Coatings Fabricated by Plasma-Spraying and Dry-Ice Blasting: Microstructure Characterization and Prolonged Lifetime, Surf. Coat. Technol., 2013, 236, p 557-567

    Article  CAS  Google Scholar 

  33. S.R. Dhineshkumar, M. Duraiselvam, S. Natarajan, S.S. Panwar, T. Jana, and M.A. Khan, Enhanced Ablation Resistance Through Laser Glazing of Plasma Sprayed LaTi2Al9O19-Based Functionally Graded Thermal Barrier Coating, Ceram. Int., 2016, 42(8), p 10184-10190

    Article  CAS  Google Scholar 

  34. A. Vencl, S. Arostegui, G. Favaro, F. Zivic, M. Mrdak, S. Mitrović, and V. Popovic, Evaluation of Adhesion/Cohesion Bond Strength of the Thick Plasma Spray Coatings by Scratch Testing on Coatings Cross-Sections, Tribol. Int., 2011, 44(11), p 1281-1288

    Article  CAS  Google Scholar 

  35. C. Giolli, A. Scrivani, G. Rizzi, F. Borgioli, G. Bolelli, and L. Lusvarghi, Failure Mechanism for Thermal Fatigue of Thermal Barrier Coating Systems, J. Therm. Spray Technol., 2009, 18(2), p 223-230

    Article  CAS  Google Scholar 

  36. J. Wu, H. Guo, L. Zhou, L. Wang, and S. Gong, Microstructure and Thermal Properties of Plasma Sprayed Thermal Barrier Coatings from Nanostructured YSZ, J. Therm. Spray Technol., 2010, 19(6), p 1186-1194

    Article  CAS  Google Scholar 

  37. H. Guo, Y. Wang, L. Wang, and S. Gong, Thermo-Physical Properties and Thermal Shock Resistance of Segmented La2Ce2O7/YSZ Thermal Barrier Coatings, J. Therm. Spray Technol., 2009, 18(4), p 665-671

    Article  CAS  Google Scholar 

  38. R. Ahmadi-Pidani, R. Shoja-Razavi, R. Mozafarinia, and H. Jamali, Improving the Thermal Shock Resistance of Plasma Sprayed CYSZ Thermal Barrier Coatings by Laser Surface Modification, Opt. Laser. Eng., 2012, 50(5), p 780-786

    Article  Google Scholar 

  39. Y. Cao, Q. Wang, Y. Liu, X. Ning, and H. Wang, Characteristics and Thermal Cycling Behavior of Plasma-Sprayed Ba(Mg1/3Ta2/3)O3 Thermal Barrier Coatings, Ceram. Int., 2017, 43(14), p 10955-10959

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was sponsored by the National Natural Science Foundation of China (Contact No. 51871012) and the Fundamental Research Funds for the Central Universities (No. FRF-GF-19-023B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laiqi Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, L., Huang, Q. et al. Characteristics and Thermal Shock Resistance of HVOF-Sprayed TiAlNb Coatings. J Therm Spray Tech 29, 1752–1762 (2020). https://doi.org/10.1007/s11666-020-01061-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01061-2

Keywords

Navigation