Skip to main content
Log in

Antioxidative and anti-diabetic potentials of tigernut (Cyperus esculentus) sedge beverages fortified with Vernonia amygdalina and Momordica charantia

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The utilization of tigernut is growing by the day due mainly to the myriads of health benefits attributed to it. Value addition is anticipated to further enhance the economic value and utilization of this sedge family crop. This study examined the physicochemical, antioxidant, anti-diabetic, and sensory properties of tigernut beverages fortified with extracts of Vernonia amygdalina and Momordica charantia with date and honey as sweeteners. Folin–Ciocalteau method was used to measure the total phenolic content while the ferric reducing antioxidant potential (FRAP), 2,2-diphenyl-1-picryhydrazyl (DPPH) and 2,2-azinobis (3-ethylbenzothiazoline-6-Sulfonate) (ABTS) were used to determine the in-vitro antioxidant activities. The inhibitory action of the beverages on α-amylase and α-glucosidase was used to assess the anti-diabetic potential. The DPPH, FRAP and ABTS scavenging activities were significantly higher in all the beverages with vegetable extracts. The inhibitory activity on α-glucosidase and α-amlyase are 38.82–75.54% and 20.59–60.14%, respectively. The sweeteners were able to significantly mask the bitter taste from the vegetable extracts thus improving consumer acceptability. The inhibitory effect of the beverages on diabetic related enzymes and the antioxidant activities suggest the formulation could be used as functional beverages with antidiabetic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Hilton, Developing new functional food and nutraceutical products (Academic Press, New York, 2017), pp. 1–28

    Google Scholar 

  2. R. Vecchio, E.J. Van Loo, A. Annunziata, Int. J. Consum. Stud. 40, 368–378 (2016)

    Google Scholar 

  3. A.H. Malik, Y. Akram, S. Shetty, S.S. Malik, V.Y. Njike, Am. J. Cardiol. 113, 1574–1580 (2014)

    PubMed  Google Scholar 

  4. U. Asmat, K. Abad, K. Ismail, Saudi Pharm. J. 24, 547–553 (2016)

    PubMed  Google Scholar 

  5. F. Alam, M.A. Islam, M.A. Kamal, S.H. Gan, Curr. Med. Chem. 25, 5395–5431 (2018)

    CAS  PubMed  Google Scholar 

  6. K.J. Foreman, N. Marquez, A. Dolgert, K. Fukutaki, N. Fullman, M. McGaughey et al., Lancet 392, 2052–2090 (2018)

    PubMed  PubMed Central  Google Scholar 

  7. M.R. Corbo, A. Bevilacqua, L. Petruzzi, F.P. Casanova, M. Sinigaglia, Comp Rev Food Sci. Food Saf. 13, 1192–1206 (2014)

    CAS  Google Scholar 

  8. A.A. Badejo, B. Olawoyin, S.O. Salawu, O.S. Fasuhanmi, A.A. Boligon, V.N. Enujiugha, J. Food Meas. Charact. 11, 2094–2101 (2017)

    Google Scholar 

  9. H. Jooyandeh, Middle East. J. Sci. Res. 7, 71–80 (2011)

    Google Scholar 

  10. A.A. Badejo, A. Damilare, T.D. Ojuade, Prev. Nutr. Food Sci. 19, 227–233 (2014)

    PubMed  PubMed Central  Google Scholar 

  11. S. Wang, V. Chelikani, L. Serventi, LWT Food Sci. Technol. 97, 570–572 (2018)

    CAS  Google Scholar 

  12. A.O. Adebayo-Oyetoro, O.O. Ogundipe, S.A.O. Adeyeye, E.A. Akande, A.B. Akinyele, Curr. Res Nutr. Food Sci. J. 7, 265–271 (2019)

    Google Scholar 

  13. S. Sethi, S.K. Tyagi, R.K. Anurag, J. Food Sci. Technol. 53, 3408–3423 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. E. Roselló-Soto, C. Garcia, A. Fessard, F.J. Barba, P.E. Munekata, J.M. Lorenzo, F. Remize, Fermentation 5(1), 3 (2019)

    Google Scholar 

  15. E. Sanchez-Zapata, J. Fernandez-Lopez, J.A. Perez-Alvarez, Comp. Rev. Food Sci. Food Saf. 11, 366–377 (2012)

    CAS  Google Scholar 

  16. A.A. Badejo, U. Nwachukwu, H.N. Ayo-Omogie, O.S. Fasuhanmi, J. Food Meas. Charact. 14, 438–445 (2020)

    Google Scholar 

  17. M. Rios, F. Tinitana, P. Jarrin-V, N. Donoso, J.C. Romero-Benavides, J. Ethnobiol. Ethnomed. 13, 18 (2017)

    PubMed  PubMed Central  Google Scholar 

  18. K.W. Ong, A. Hsu, L. Song, D. Huang, B.K.H. Tan, J. Ethnopharmacol. 133, 598–607 (2011)

    PubMed  Google Scholar 

  19. W.Y. Ho, W.S. Liang, S.K. Yeap, B.K. Beh, A.H.N. Yousr, N.B. Alitheen, Afr. J. Biotechnol. 11, 4090–4094 (2012)

    Google Scholar 

  20. I.J. Atangwho, G.E. Egbung, M. Ahmad, M.F. Yam, M.Z. Asmawi, Food Chem. 141, 3428–3434 (2013)

    CAS  PubMed  Google Scholar 

  21. L. Leung, R. Birtwhistle, J. Kotecha, S. Hannah, S. Cuthbertson, Brit. J. Nutr. 102, 1703–1708 (2009)

    CAS  PubMed  Google Scholar 

  22. A. Blum, C. Loerz, H.J. Martin, C.A. Staab-Weijnitz, E. Maser, J. Steroid Biochem. Mol. Biol. 128, 51–55 (2012)

    CAS  PubMed  Google Scholar 

  23. N.M. Nwinuka, G.O. Iben, G.H. Fkeke, J. Applied Sci. Environ. Man. 9, 150–155 (2005)

    Google Scholar 

  24. A.O. Markkar, A.V. Goodchild, Quantification of Tannins. A laboratory manual. International Centre for Agricultural Reserve in Dry Areas (ICARDA) (1996)

  25. A.J. Harborne, Phytochemical methods a guide to modern techniques of plant analysis. Springer Science & Business Media (1998)

  26. V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventos, Methods Enzymol. 299, 152–178 (1999)

    CAS  Google Scholar 

  27. Y. Pu, T. Ding, W. Wang, Y. Xiang, X. Ye, M. Li, D. Liu, J. Sci. Food Agric. 98, 628–634 (2018)

    CAS  PubMed  Google Scholar 

  28. M.A. Gyamfi, M. Yonamine, Y. Aniya, Genet. Pharmacol. 32, 661–667 (1999)

    CAS  Google Scholar 

  29. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, C. Rice-Evans, Free Radic. Biol. Med. 26, 1231–1237 (1999)

    CAS  PubMed  Google Scholar 

  30. R. Pulido, L. Bravo, F. Saura-Calixto, J. Agric. Food Chem. 48, 3396–3402 (2000)

    CAS  PubMed  Google Scholar 

  31. V. Worthington, Alpha amylase, in Worthington Enzyme Manual, ed. by V. Worthington (Worthington Biochemical Corp., Freehold, NJ, 1993), pp. 36–41

    Google Scholar 

  32. I. Kwon, E. Apostolidis, K. Shetty, J. Food Biochem. 31, 370–385 (2007)

    CAS  Google Scholar 

  33. S. Clark, M. Costello, M. Drake, F. Bodyfelt. The Sensory Evaluation of Dairy Products. 2nd edn. (Springer Science & Business Media, LLC, 2009), p. 573

  34. CRDO, https://www.chufadevalencia.org. Accessed Dec 20, 2019

  35. P.V. Rao, K.T. Krishnan, N. Salleh, S.H. Gan, Rev. Bras. Farmacogn. 26, 657–664 (2016)

    CAS  Google Scholar 

  36. O.R. Alara, N.H. Abdurahman, S.K.A. Mudalip, O.A. Olalere, J. Chem. Eng. Ind. Biotechnol. 2, 80–96 (2017)

    Google Scholar 

  37. R.P. Holmes, M. Kennedy, Kidney Intern. 57(4), 1662–1667 (2000)

    CAS  Google Scholar 

  38. C. Chaves-López, A. Serio, C.D. Grande-Tovar, R. Cuervo-Mulet, J. Delgado-Ospina, A. Paparella, Comp. Rev. Food Sci. Food Saf. 13, 1031–1048 (2014)

    Google Scholar 

  39. H. Khan, S.A. Jan, M. Javed, R. Shaheen, Z. Khan, A. Ahmad, S.Z. Safi, M. Imran, J. Food Biochem. 40, 61–70 (2016)

    CAS  Google Scholar 

  40. M.J. Ayeni, S.D. Oyeyemi, J. Kayode, G.P. Peter, J. Nat. Sci. Res. 5, 99–107 (2015)

    Google Scholar 

  41. O. Benavente-García, J. Castillo, F.R. Marin, A. Ortuño, J.A. Del Río, J. Agric. Food Chem. 45, 4505–4515 (1997)

    Google Scholar 

  42. J. Kubola, S. Siriamornpun, Food Chem. 110, 881–890 (2008)

    CAS  PubMed  Google Scholar 

  43. M. Dżugan, M. Tomczyk, P. Sowa, D. Grabek-Lejko, Molecules 23, 2069 (2018)

    PubMed Central  Google Scholar 

  44. I.F.F. Benzie, J.J. Strain, Anal. Biochem. 239, 70–76 (1996)

    CAS  PubMed  Google Scholar 

  45. V. Andres, M.J. Villanueva, I. Mateos-Aparicio, M.D. Tenorio, J. Food Nutr. Res. 53, 71–80 (2014)

    CAS  Google Scholar 

  46. S. Lordan, T.J. Smyth, A. Soler-Vila, C. Stanton, R.P. Ross, Food Chem. 141, 2170–2176 (2013)

    CAS  PubMed  Google Scholar 

  47. G. Oboh, A.O. Ademiluyi, A.J. Akinyemi, T. Henle, J.A. Saliu, U. Schwarzenbolz, J. Funct. Foods 4, 450–458 (2012)

    CAS  Google Scholar 

  48. U. Etxeberria, A.L. de la Garza, J. Campión, J.A. Martínez, F.I. Milagro, Expert Opin. Ther. Tar. 16, 269–297 (2012)

    CAS  Google Scholar 

  49. R. Tundis, M. Loizzo, F. Menichini, Mini Rev. Med. Chem. 10, 315–331 (2010)

    CAS  PubMed  Google Scholar 

  50. B. Villegas, I. Carbonell, E. Costell, J. Sci. Food Agric. 88, 397–403 (2007)

    Google Scholar 

  51. M. Yanes, L. Durán, E. Costell, J. Food Eng. 51, 229–234 (2002)

    Google Scholar 

  52. S. Ghnimi, S. Umer, A. Karim, A. Kamal-Eldin, NFS J. 6, 1–10 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adebanjo Ayobamidele Badejo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badejo, A.A., Falarunu, A.J., Duyilemi, T.I. et al. Antioxidative and anti-diabetic potentials of tigernut (Cyperus esculentus) sedge beverages fortified with Vernonia amygdalina and Momordica charantia. Food Measure 14, 2790–2799 (2020). https://doi.org/10.1007/s11694-020-00524-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00524-y

Keywords

Navigation