Skip to main content

Advertisement

Log in

Conservation planning of cash crops species (Garcinia gummi-gutta) under current and future climate in the Western Ghats, India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Agriculture, global biodiversity and distribution of species are increasingly influenced by changing climate. Assessing the future distribution of biodiversity under different climate change scenarios is an essential step towards conservation planning and policy implementations. To understand the climate change impacts, the present study used Garcinia gummi-gutta cash crop species as a case study that is even exported, adding the nation’s foreign reserve. Given the importance of this crop for local and national economy, the main objectives of the study were to analyse the impact of present and future climates on ecologically susceptible G. gummi-gutta species in the Western Ghats based on maximum entropy model (MaxEnt). Future projections with RCP scenarios for 2050 and 2070 were made using the data of 84 species occurrence and climatic variables of three climate models from IPCC 5th assessment. The contribution of climatic variables was analysed by jackknife test, and 0.888 of AOC indicates high accuracy of the model results. It was found that annual precipitation, coldest quarter precipitation, and precipitation seasonality were the key determining factors for the suitability of this species. In addition, the results of all scenarios showed that the current suitability of the species would be dramatically decreased by 2050 and 2070. The study suggests how the MaxEnt approach can be an important tool for agricultural development, management of species habitats, conservation of biodiversity, and climate change rehabitation planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adhikari, D., Barik, S. K., & Upadhaya, K. (2012). Habitat distribution modelling for reintroduction of Ilex khasiana Park: A critically endangered tree species of north-eastern India. Ecological Engineering, 40, 37–43. https://doi.org/10.1016/j.ecoleng.2011.12.004.

    Article  Google Scholar 

  • Akhter, S., McDonald, M., Breugel, P., Sohel, S., Kjaer, E., & Mariott, R. (2017). Polyprenols are synthesized by a plastidial cis-prenyltransferase and influence photosynthetic performance. Plant Cell, 29, 1709–1725.

    Article  CAS  Google Scholar 

  • Akhter, S., McDonald, M., Breugel, P., Sohel, S., Kjaer, E., & Mariott, R. (2017). Habitat distribution modelling to identify areas of high conservation value under climate change for Mangifera sylvatica Roxb. of Bangladesh. Land Use Policy, 60, 223–232. https://doi.org/10.1016/j.landusepol.2016.10.027.

    Article  Google Scholar 

  • Akhter, S., McDonald, M., & Mariott, R. (2016). Mangifera sylvatica (Wild mango): A new cocoa butter alternative. Scientific Reports, 6, 32–50. https://doi.org/10.1038/srep32050.

    Article  CAS  Google Scholar 

  • Alamgir, M., Mukul, S. A., & Turton, S. (2015). Modelling spatial distribution of critically endangered Asian elephant and Hoolock gibbon in Bangladesh forest ecosystems under a changing climate. Applied Geography, 60, 10–19. https://doi.org/10.1016/j.apgeog.2015.03.001.

    Article  Google Scholar 

  • Alexander, J. M., et al. (2015). Novel competitors shape species responses to climate change. Nature, 525, 515–518. https://doi.org/10.1038/nature14952.

    Article  CAS  Google Scholar 

  • Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223–1232.

    Article  Google Scholar 

  • Anderegg, W. R. L., Hicke, J. A., Fisher, R. A., Allen, C. D., Aukema, J., Bentz, B., et al. (2015). Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist, 208, 674–683. https://doi.org/10.1111/nph.13477.

    Article  Google Scholar 

  • Anderson, R. P., & Raza, A. (2010). The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution, preliminary tests with montane rodents (genus Nephelomys) in Venezuela. Journal of Biogeography, 37, 1378–1393.

    Article  Google Scholar 

  • Babar, S., Amarnath, G., Reddy, C. S., Jentsch, A., & Sudhakar, S. (2012). Species distribution models: Ecological explanation and prediction of an endemic and endangered plant species Pterocarpus santalinus L.f. Current Science, 102, 8.

    Google Scholar 

  • Bajjouk, T., Rochette, S., Laurans, M., Ehrhold, A., Hamdi, A., & Le Niliot, P. (2015). Multi-approach mapping to help spatial planning and management of the kelp species L. digitata and L. hyperborea: Case study of the Molène Archipelago. Brittany. Journal of Sea Research, 100, 2–21.

    Article  Google Scholar 

  • Barrett, M. A., Brown, J. L., Junge, R. E., & Yoder, A. D. (2013). Climate change, predictive modeling and lemur health: Assessing impacts of changing climate on health and conservation in Madagascar. Biological Conservation, 157, 409–422. https://doi.org/10.1016/j.biocon.2012.09.003.

    Article  Google Scholar 

  • Bobrowski, M., Gerlitz, L., & Schickhoff, U. (2017). Modelling the potential distribution of Betula utilis in the Himalaya. Global Ecology and Conservation, 11, 69–83.

    Article  Google Scholar 

  • Bosso, L., Smeraldo, S., Rapuzzi, P., Sama, G., Garonna, A. P., & Russo, D. (2018). Nature Protection areas of Europe are insufficient to preserve the threatened beetle Rosalia alpine (Coleoptera: Cerambycidae): Evidence from species distribution models and conservation gap analysis. Ecological Entomology, 43(2), 192–203.

    Article  Google Scholar 

  • Briscoe, D., Hiatt, S., Lewison, R., & Hines, E. (2014). Modeling habitat and bycatch risk for dugongs in Sabah, Malaysia. Endangered Species Research, 24, 237–247.

    Article  Google Scholar 

  • Brooke, C. (2008). Conservation and adaptation to climate change. Conservation Biology, 22, 1471–1476. https://doi.org/10.1111/j.1523-1739.2008.01031.x.

    Article  Google Scholar 

  • Brown, J. L., Bennett, J. R., & French, C. M. (2017). SDMtoolbox2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ, 5, e4095.

    Article  Google Scholar 

  • Cassini, M. H. (2011). Ranking threats using species distribution models in the IUCN Red List assessment process. Biodiversity and Conservation, 20, 3689–3692.

    Article  Google Scholar 

  • Cavaliere, C. (2009). The effects of climate change on medicinal and aromatic plants. The Journal of the American Botanical Council, 81, 44–57.

    Google Scholar 

  • Cetin, M. (2015a). Using GIS analysis to assess urban green space in terms of accessibility: Case study in Kutahya. International Journal of Sustainable Development and World Ecology. https://doi.org/10.1080/13504509.2015.1061066.

    Article  Google Scholar 

  • Cetin, M. (2015b). Determining the bioclimatic comfort in Kastamonu City. Environmental Monitoring and Assessment, 187(10), 640. https://doi.org/10.1007/s10661-015-4861-3.

    Article  Google Scholar 

  • Cetin, M. (2016). Determination of bioclimatic comfort areas in landscape planning: A case study of Cide coastline. Turkish Journal of Agriculture-Food Science and Technology, 4(9), 800–804.

    Article  Google Scholar 

  • Cetin, M., Adiguzel, F., Kaya, O., & Sahap, A. (2016). Mapping of bioclimatic comfort for potential planning using GIS in Aydin. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-016-9885-5.

    Article  Google Scholar 

  • Cetin, M., Topay, M., Kaya, L. G., & Yilmaz, B. (2010). Efficiency of bioclimatic comfort in landscape planning process: The case of Kutahya. Suleyman Demirel University. Journal of Faculty of Forestry A, 1, 83–95.

    Google Scholar 

  • Chandran, M. D. S., & Mesta, D. K. (2001). On the conservation of the Myristica swamps of the Western Ghats. In U. R. Shaanker, K. N. Ganeshaiah, & K. S. Bawa (Eds.), Forest genetic resources: Status, threats and conservation strategies (pp. 1–19). New Delhi: Oxford & IBH.

    Google Scholar 

  • Chandran, S. M. D., Rao, G. R., Gururaja, K. V., & Ramachandra, T. V. (2010). Ecology of the swampy relic forests of Kathalekan from central western Ghats, India. Bioremediation. Biodiversity and Bioavailability (Global Science Book Journal), 4, 54–68.

    Google Scholar 

  • Chaturvedi, R. K., Joshi, J., Jayaraman, M., Bala, G., & Ravindranath, N. H. (2012). Multi-model climate change projections for India under representative concentration pathways. Current Science, 103, 7.

    Google Scholar 

  • Christensen, J., & Wilson, J. (2014). Congressional hearing investigates Dr. Oz ‘miracle’ weight loss claims. CNN Health. https://edition.cnn.com/2014/06/17/health/senate-grills-dr-oz/index.html. Accesssed 10 Dec 2017.

  • Clarke, L., Edmonds, J., Jacoby, H., Pitcher, H., Reilly, J., Richels, R. (2007). Scenarios of greenhouse gas emissions and atmospheric concentrations. In Sub-report 2.1A of synthesis and assessment product 2.1 by the U.S. climate change science program and the subcommittee on global change research. Department of Energy, Office of Biological & Environmental Research, Washington, 7, DC, USA154. https://science.energy.gov/~/media/ber/pdf/Sap_2_1a_final_all.pdf. Accesssed 18 Apr 2018.

  • Collen, B., Dulvy, N. K., Gaston, K. J., Gardenfors, U., et al. (2016). Clarifying misconceptions of extinction risk assessment with the IUCN Red List. Biology Letters, 12(4), 20150843.

    Article  Google Scholar 

  • Deb, J. C., Phinn, S., Butt, N., & McAlpine, C. A. (2017). The impact of climate change on the distribution of two threatened Dipterocarp trees. Ecology and Evolution, 7, 2238–2248. https://doi.org/10.1002/ece3.2846.

    Article  Google Scholar 

  • Duke, J. A., et al. (2002). CRC Handbook of medicinal herbs. CRC MedHerbs ed2. https://www.taylorfrancis.com/books/9781420040463. Accesssed 2 Dec 2017.

  • Elith, J. H., Graham, C. P., Anderson, R., et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129–151.

    Article  Google Scholar 

  • Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of Maxent for ecologists. Diversity and Distributions, 17, 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x.

    Article  Google Scholar 

  • Embling, C. B., Gillibrand, P. A., Gordon, J., Shrimpton, J., Stevick, P. T., & Hammond, P. S. (2010). Using habitat models to identify suitable sites for marine protected areas for harbour porpoises (Phocoena phocoena). Biological Conservation, 143, 267–279.

    Article  Google Scholar 

  • Field, B., Boesch, D. F., Stuart, F., & Root, T. L. (2008). Ecological impact of climate change, United States Geological Survey (USGS). http://dels.nas.edu/Report/Ecological-Impacts-Climate-Change/12491. Accesssed 18 Apr 2018.

  • Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38–49. https://doi.org/10.1017/S0376892997000088.

    Article  Google Scholar 

  • Fivaz, F. P., & Gonseth, Y. (2014). Using species distribution models for IUCN Red Lists of threatened species. Journal of Insect Conservation, 18, 427–436.

    Article  Google Scholar 

  • Franco, A. M. A., et al. (2006). Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Global Change Biology, 12, 1545–1553. https://doi.org/10.1111/j.13652486.2006.01180.x.

    Article  Google Scholar 

  • Gaston, A., & Garcia-Vinas, J. I. (2013). Evaluating the predictive performance of stacked species distribution models applied to plant species selection in ecological restoration. Ecological Modelling, 263, 103–108. https://doi.org/10.1016/j.ecolmodel.2013.04.020.

    Article  Google Scholar 

  • Graham, C. H., & Hijmans, R. J. (2006). A comparison of methods for mapping species ranges and species richness. Global Ecology and Biogeography, 15, 578–587. https://doi.org/10.1111/j.1466-8238.2006.00257.x.

    Article  Google Scholar 

  • Hajra, R., Szabo, S., Tessler, Z., Ghosh, T., Matthews, Z., & Foufoula-Georgiou, E. (2017). Unravelling the association between the impact of natural hazards and household poverty: Evidence from the Indian Sundarban delta. Sustainability Science. https://doi.org/10.1007/s11625-016-0420-2.

    Article  Google Scholar 

  • Hamann, A., & Wang, T. (2006). Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology, 87, 2773–2786. https://doi.org/10.1890/0012-9658.

    Article  Google Scholar 

  • Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29, 773–785. https://doi.org/10.1111/j.0906-7590.2006.04700.x.

    Article  Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parr, A. J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978. https://doi.org/10.1002/joc.1276.

    Article  Google Scholar 

  • Hole, D. G., Young, K. R., & Seimon, A. et al. (2011). Adaptive management for biodiversity conservation under climate change—A Tropical Andean perspective. In Herzog, S. K., et al. (Eds.), Climate change effects on the biodiversity of the tropical Andes: An assessment of the status of scientific knowledge. Inter-American Institute of Global Change Research and Scientific Committee on Problems of the Environment.

  • IMD. (2016). ‘Annual Climate Summary 2016’, Indian Meteorological Department. Govt. of India, Pune, India.

  • IPCC. (2013). Summary for policymakers. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.

    Chapter  Google Scholar 

  • IUCN. (2015). The IUCN red list of threatened species. Version, 2015.2. http://www.iucnredlist.org/. Accesssed 6 Apr 2018.

  • Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review, 106, 620–630. https://doi.org/10.1103/PhysRev.106.620.

    Article  Google Scholar 

  • Khanum, R., Mumtaz, A. S., & Kumar, S. (2013). Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecologica, 49, 23–31. https://doi.org/10.1016/j.actao.2013.02.007.

    Article  Google Scholar 

  • Leathwick, J., Moilanen, A., Francis, M., Elith, J., Taylor, P., Julian, K., et al. (2008). Novel methods for the design and evaluation of marine protected areas in offshore waters. Conservation Letters, 1, 91–102.

    Article  Google Scholar 

  • Liang, E., Wang, Y., Piao, S., et al. (2016). Species interactions slow warming-induced upward shifts of tree lines on the Tibetan Plateau. Proceedings of National Academy of Sciences, 113(16), 4380–4385. https://doi.org/10.1073/pnas.1520582113.

    Article  CAS  Google Scholar 

  • Lieske, D. J., Fifield, D. A., & Gjerdrum, C. (2014). Maps, models, and marine vulnerability: Assessing the community distribution of seabirds at sea. Biological Conservation, 172, 15–28.

    Article  Google Scholar 

  • Liu, C., White, M., & Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40(4), 778–789.

    Article  Google Scholar 

  • Lobo, J. M., Jimenez-valverde, A., & Real, R. (2008). AUC: A misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17, 145–151.

    Article  Google Scholar 

  • Maes, D., Isaac, N. J. B., Harrower, C. A., Collen, B., et al. (2015). The use of opportunistic data for IUCN Red List assessments. Biological Journal of the Linnean Society, 115, 690–706.

    Article  Google Scholar 

  • Marcer, A., Sáez, L., Molowny-Horas, R., Pons, X., et al. (2013). Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biological Conservation, 166, 221–230.

    Article  Google Scholar 

  • McLane, S. C., & Aitken, S. N. (2012). White bark pine (Pinus albicaulis) assisted migration potential: Testing establishment north of the species range. Ecological Applications, 22, 142–153. https://doi.org/10.1890/11-0329.1.

    Article  Google Scholar 

  • Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J. F., et al. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climate Change, 109, 213–241. https://doi.org/10.1007/s10584-011-0156-z.

    Article  CAS  Google Scholar 

  • Menon, A., Levermann, A., Schewe, J., Lehmann, J., & Frieler, K. (2013). Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 model. Earth System Dynamics, 4, 287–300. https://doi.org/10.5194/esd-4-287-2013.

    Article  Google Scholar 

  • Molloy, S. W., Davis, R. A., & Van Etten, J. B. (2013). Species distribution modelling using bioclimatic variables to determine the impacts of a changing climate on the western ringtail possum (Pseudo cheirus occidentals; Pseudo cheiridae). Environmental Conservation. https://doi.org/10.1017/S0376892913000337.

    Article  Google Scholar 

  • Molur, S., Smith, K. G., Daniel, B. A., & Darwall, W. R. T. (2011). The status and distribution of freshwater biodiversity in the Western Ghats. International Union for Conservation of Nature (IUCN), Gland, Switzerland and Zoo Outreach Organization (ZOO), Coimbatore, India. https://portals.iucn.org/library/sites/library/files/documents/RL-540-001.pdf. Accesssed 17 Apr 2018.

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858. https://doi.org/10.1038/35002501.

    Article  CAS  Google Scholar 

  • Orwa, C., Mutua, A., Kindt, R., Jamnadass, R., Anthony, S. (2009). Agroforestry Database: A tree reference and selection guide version 4.0. http://www.worldagroforestry.org. Accesssed 9 Oct 2017.

  • Peterson, A. T., Papes, M., & Eaton, M. (2007). Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography, 30, 550–560. https://doi.org/10.1111/j.0906-7590.2007.05102.x.

    Article  Google Scholar 

  • Phillips, S. J., & Dudik, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31, 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x.

    Article  Google Scholar 

  • Phillips, S. J., Dudik, M., & Schapire, R. E. (2004). A maximum entropy approach to species distribution modeling. In Proceedings of the 21st international conference on machine learning. https://doi.org/10.1145/1015330.1015412.

  • Polak, T., & Saltz, D. (2011). Reintroduction as an ecosystem restoration technique. Conservation Biology, 25, 424–427. https://doi.org/10.1111/j.1523-1739.2011.01669.x.

    Article  Google Scholar 

  • Pramanik, M. K., Paudel, U., Mondal, B., Chakraborti, S., & Dev, P. (2017). Predicting climate change impacts on the distribution of the threatened Garcinia indica in the Western Ghats, India. Climate Risk Management, 19, 94–105. https://doi.org/10.1016/j.crm.2017.11.002.

    Article  Google Scholar 

  • Priti, H., Aravind, N. A., Uma Shaanker, R., & Ravikanth, G. (2016). Modeling impacts of future climate on the distribution of Myristicaceae species in the Western Ghats, India. Ecological Engineering, 89, 14–23. https://doi.org/10.1016/j.ecoleng.2016.01.006.

    Article  Google Scholar 

  • Raha, A., & Hussain, S. A. (2016). Factors affecting habitat selection by three sympatric otter species in the southern Western Ghats, India. Acta Ecologica Sinica, 36, 45–49. https://doi.org/10.1016/j.chnaes.2015.12.002.

    Article  Google Scholar 

  • Ray, R., Gururaja, K. V., & Ramachandra, T. V. (2011). Predictive distribution modeling for rare Himalayan medicinal plant Berberis aristata DC. Journal of Environmental Biology, 32, 725–730.

    Google Scholar 

  • Remya, K., Ramachandran, A., & Jayakumar, S. (2015). Predicting the current and future suitable habitat distribution of Myristica dactyloides Gaertn. using MaxEnt model in the Eastern Ghats, India. Ecological Engineering, 82, 184–188. https://doi.org/10.1016/j.ecoleng.2015.04.053.

    Article  Google Scholar 

  • Riahi, K., Gruebler, A., & Nakicenovic, N. (2007). Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change, 74, 887–935. https://doi.org/10.1016/j.techfore.2006.05.026.

    Article  Google Scholar 

  • Rospleszcz, S., Janitza, S., & Boulesteix, A. L. (2014). The effects of bootstrapping on model selection for multiple regression. Technical Report 164, Department of Statistics, University of Munich.

  • Shrestha, U. B., & Bawa, K. S. (2014). Impact of climate change on potential distribution of Chinese caterpillar fungus (Ophiocordyceps sinensis) in Nepal himalaya. PLoS ONE, 9(9), e106405.

    Article  Google Scholar 

  • Smeraldo, S., Di Febbraro, M., Ciroviic, D., Bosso, L., Trbojeviic, I., & Russo, D. (2017). Species distribution models as a tool to predict range expansion after reintroduction: A case study on Eurasian beavers (Castor fiber). Journal for Nature Conservation, 37, 12–20.

    Article  Google Scholar 

  • Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285–1293. https://doi.org/10.1126/science.3287615.

    Article  CAS  Google Scholar 

  • Szabo, S., Hossain, S., Matthews, Z., Lazar, A., & Ahmad, S. (2015). Soil salinity, household wealth and food insecurity in agriculture-dominated delta. Sustainability Science. https://doi.org/10.1007/s11625-015-0337-1.

    Article  Google Scholar 

  • Thompson, I., Mackey, B., McNulty, S., & Mosseler, A. (2009). A Synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Forest Resilience, Biodiversity, and Climate Change. Secretariat of the Convention on Biological Diversity, Montreal, pp. 67 technical series 43. https://www.cbd.int/doc/publications/cbd-ts-43-en.pdf. Accesssed 3 Sept 2017.

  • Thuiller, W., Lavorel, S., Araujo, M. B., Sykes, M. T., & Prentice, I. C. (2005). Climate change threats plant diversity in Europe. Proceedings of the National Academy of Sciences of the U S A, 102, 8245–8250.

    Article  CAS  Google Scholar 

  • Tinworth, K. D., Harris, P. A., Sillence, M. N., & Noble, G. K. (2010). Potential treatments for insulin resistance in the horse: A comparative multi-species review. Veterinary Journal, 186, 282–291. https://doi.org/10.1016/j.tvjl.2009.08.032.

    Article  CAS  Google Scholar 

  • Ved, D., Saha, D., Ravikumar, K., & Haridasan, K. (2015). Garcinia indica. The IUCN Red List of Threatened Species 2015, e. T50126592A50131340.

  • Ved, D., Sureshchandra, S., Barve, V., Srinivas, V., Sangeetha, S., Ravikumar, K., et al. (2016). (envis.frlht.org/frlhtenvis.nic.in). FRLHT’s ENVIS Centre on Medicinal Plants, Bengaluru.

  • Vincent, L. A., Anguilar, E., Saindou, M., Hassane, A. F., Jumaux, G., Roy, D., et al. (2011). Observed trends in indices of daily and extreme temperature and precipitation for the countries of the western Indian Ocean. Journal Geophysical Research, 116, 1961–2008. https://doi.org/10.1029/2010JD015303.

    Article  Google Scholar 

  • Wise, M. A., Calvin, K. V., Thomson, A. M., Clarke, L. E., Bond-Lamberty, B., Sands, R. D., et al. (2009). Implications of limiting CO2 concentrations for land use and energy. Science, 324, 1183–1186. https://doi.org/10.1126/science.1168475.

    Article  CAS  Google Scholar 

  • Yang, X. Q., Kushwaha, S. P. S., Saran, S., Xu, J., & Roy, P. S. (2013). MaxEnt modeling for predicting the potential distribution of medicinal plant Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering, 51, 83–87. https://doi.org/10.1016/j.ecoleng.2012.12.004.

    Article  CAS  Google Scholar 

  • Yuan, H., Wei, Y., & Wang, X. (2015). Maxent modeling for predicting the potential distribution of Sanghuang, an important group of medicinal fungi in China. Fungal Ecology, 17, 140–145.

    Article  Google Scholar 

  • Zeppel, M. J., Adams, H. D., & Anderegg, W. R. (2011). Mechanistic causes of tree drought mortality: Recent results, unresolved questions and future research needs. New Phytologist, 192, 800–803. https://doi.org/10.1111/j.1469-8137.2011.03960.x.

    Article  Google Scholar 

  • Zheng, H., Shen, G., Shang, L., Lv, X., Wang, Q., McLaughlin, N., et al. (2016). Efficacy of conservation strategies for endangered oriental white storks (Ciconia boyciana) under climate change in Northeast China. Biological Conservation, 204, 367–377. https://doi.org/10.1016/j.biocon.2016.11.004.

    Article  Google Scholar 

  • Zimbres, B. Q. C., de Aquino, P. D. U., Machado, R. B., Silveira, L., Jacomo, A. T. A., Sollmann, R., et al. (2012). Range shifts under climate change and the role of protected areas for armadillos and anteaters. Biological Conservation, 152, 53–61. https://doi.org/10.1016/j.biocon.2012.04.010.

    Article  Google Scholar 

Download references

Acknowledgements

M. Pramanik would like to acknowledge University Grants Commission (New Delhi, India) Junior Research Fellowship for funding PhD research. Also, the author would like to thank Dr. Krishnendra Meena for his support and guidance. We thank the Editor in Chief of Environment, Development and Sustainability and the two anonymous reviewers for their assistance and valuable comments in improvement in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malay Pramanik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramanik, M., Diwakar, A.K., Dash, P. et al. Conservation planning of cash crops species (Garcinia gummi-gutta) under current and future climate in the Western Ghats, India. Environ Dev Sustain 23, 5345–5370 (2021). https://doi.org/10.1007/s10668-020-00819-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00819-6

Keywords

Navigation