Skip to main content
Log in

An enhanced sequential fully implicit scheme for reservoir geomechanics

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this paper, it is proposed an enhanced sequential fully implicit (ESFI) algorithm with a fixed stress split to approximate robustly poro-elastoplastic solutions related to reservoir geomechanics. The constitutive model considers the total strain effect on porosity/permeability variation and associative plasticity. The sequential fully implicit (SFI) algorithm is a popular solution to approximate solutions of a coupled system. Generally, the SFI consists of an outer loop to solve the coupled system, in which there are two inner iterative loops for each equation to implicitly solve the equations. The SFI algorithm occasionally suffers from slow convergence or even convergence failure. In order to improve the convergence (robustness) associated with SFI, a new nonlinear acceleration technique is proposed employing Shanks transformations in vector-valued variables to enhance the outer loop convergence, with a quasi-Newton method considering the modified Thomas method for the internal loops. In this ESFI algorithm, the fluid flow formulation is defined by Darcy’s law including nonlinear permeability based on Petunin model. The rock deformation includes a linear part being analyzed based on Biot’s theory and a nonlinear part being established using Mohr-Coulomb associative plasticity for geomechanics. Temporal derivatives are approximated by an implicit Euler method, and spatial discretizations are adopted using finite element in two different formulations. For the spatial discretization, two weak statements are obtained: the first one uses a continuous Galerkin for poro-elastoplastic and Darcy’s flow; the second one uses a continuous Galerkin for poro-elastoplastic and a mixed finite element for Darcy’s flow. Several numerical simulations are presented to evaluate the efficiency of ESFI algorithm in reducing the number of iterations. Distinct poromechanical problems in 1D, 2D, and 3D are approximated with linear and nonlinear settings. Where appropriate, the results were verified with analytic solutions and approximated solutions with an explicit Runge-Kutta solver for 2D axisymmetric poro-elastoplastic problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phillips, P. J., Wheeler, M. F.: A coupling of mixed and continuous galerkin finite element methods for poroelasticity i: the continuous in time case. Comput. Geosci. 11, 131–144 (2007)

    Google Scholar 

  2. Merle, H., Kentie, C., van Opstal, G., Schneider, G.: The bachaquero study - a composite analysis of the behavior of a compaction drive/solution gas drive reservoir. J. Petrol. Tech. 28, 1107–1115 (1976)

    Google Scholar 

  3. Kosloff, D., Scott, R., Scranton, J.: Finite element simulation of wilmington oil field subsidence: i. linear modelling. Tectonophysics 65, 339–368 (1980)

    Google Scholar 

  4. Winterfeld, P. H., Wu, Y.-s.: Coupled reservoir-geomechanical simulation of caprock failure and fault reactivation during co2 sequestration in deep saline aquifers (2017)

  5. Bruno, M.: Subsidence-induced well failure. SPE Drill. Eng. 7, 148–152 (1992)

    Google Scholar 

  6. Davies, J., Davies, D.: Stress-dependent permeability: Characterization and modeling. SPE J. 6, 224–235 (2001)

    Google Scholar 

  7. Ju, B., Wu, Y., Fan, T.: Study on fluid flow in nonlinear elastic porous media: Experimental and modeling approaches. J. Pet. Sci. Eng. 76, 205–211 (2011)

    Google Scholar 

  8. Terzaghi, K.: Erdbaumechanik auf bodenphysikalischer grundlage. franz Deutikle Leipzig und Wien (1925)

  9. Biot, M. A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Google Scholar 

  10. Settari, A., Mourits, F.: A coupled reservoir and geomechanical simulation system. SPE J 3, 219–226 (1998)

    Google Scholar 

  11. Yale, D., Lyons, S., Qin, G.: Coupled Geomechanics-Fluid Flow Modeling in Petroleum Reservoirs: Coupled versus Uncoupled Response. 4Th North American Rock Mechanics Symposium, Seattle (2000)

  12. Phillips, P. J., Wheeler, M. F.: A coupling of mixed and continuous galerkin finite element methods for poroelasticity II: the discrete-in-time case. Comput. Geosci. 11, 145–158 (2007)

    Google Scholar 

  13. Dung, T.: Coupled fluid flow-geomechanics simulations applied to compaction and subsidence estimation in stress sensitive and heterogeneous reservoirs (2007)

  14. Wei, Z., Zhang, D.: Coupled fluid-flow and geomechanics for triple-porosity/dual-permeability modeling of coalbed methane recovery. Int. J. Rock Mech. Min. Sci. 47, 1242–1253 (2010)

    Google Scholar 

  15. Peng, S., Zhang, J.: Stress-dependent permeability. In: Engineering Geology for Underground Rocks, pp 199–220. Springer Berlin Heidelberg, Berlin (2007)

  16. Aybar, U., Eshkalak, M. O., Sepehrnoori, K., Patzek, T.: Long Term Effect of Natural Fractures Closure on Gas Production from Unconventional Reservoirs. In: SPE Eastern Regional Meeting. Society of Petroleum Engineers (2014)

  17. An, C., Killough, J., Mi, L.: Stress-dependent permeability of organic-rich shale reservoirs: Impacts of stress changes and matrix shrinkage. J. Petrol. Sci. Eng. 172, 1034 – (1047)

    Google Scholar 

  18. Gutierrez, M. S., Lewis, R. W.: Coupling of fluid flow and deformation in underground formations. J. Eng. Mech. 128, 779–787 (2002)

    Google Scholar 

  19. Li, X., Liu, Z., Lewis, R. W.: Mixed finite element method for coupled thermo-hydro-mechanical process in poro-elasto-plastic media at large strains. Int. J. Numer. Methods Eng. 64, 667–708 (2005)

    Google Scholar 

  20. Jha, B., Juanes, R.: A locally conservative finite element framework for the simulation of coupled flow and reservoir geomechanics. Acta Geotech. 2, 139–153 (2007)

    Google Scholar 

  21. Minkoff, S. E., Stoneb, C. M., Bryantc, S., Peszynskac, M., Wheelerc, M. F.: Coupled fluid flow and geomechanical deformation modeling

  22. Armero, F., Simo, J. C.: A new unconditionally stable fractional step method for non-linear coupled thermomechanical problems. Int. J. Numer. Methods Eng. 35, 737–766 (1992)

    Google Scholar 

  23. Dean, R. H., Gai, X., Stone, C. M., Minkoff, S. E.: A comparison of techniques for coupling porous flow and geomechanics. SPE J. 11, 132–140 (2006)

    Google Scholar 

  24. Wheeler, M. F., Gai, X.: Iteratively coupled mixed and galerkin finite element methods for poro-elasticity. Numer. Methods Partial Differ. Equ. 23, 785–797 (2007)

    Google Scholar 

  25. Dana, S., Ganis, B., Wheeler, M. F.: A multiscale fixed stress split iterative scheme for coupled flow and poromechanics in deep subsurface reservoirs. J. Comput. Phys. 352, 1–22 (2018)

    Google Scholar 

  26. Kim, J., Tchelepi, H., Juanes, R.: Stability and convergence of sequential methods for coupled flow and geomechanics: Drained and undrained splits. Comput. Methods Appl. Mech. Eng. 200, 2094–2116 (2011a)

    Google Scholar 

  27. Kim, J., Tchelepi, H., Juanes, R.: Stability and convergence of sequential methods for coupled flow and geomechanics: Fixed-stress and fixed-strain splits. Comput. Methods Appl. Mech. Eng. 200, 1591–1606 (2011b)

    Google Scholar 

  28. Kim, J., Tchelepi, H. A., Juanes, R.: Stability, accuracy, and efficiency of sequential methods for coupled flow and geomechanics. SPE J. 16, 249–262 (2011c)

    Google Scholar 

  29. Mikeliċ, A., Wheeler, M. F.: Convergence of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 17, 455–461 (2012)

    Google Scholar 

  30. Jiang, J., Tchelepi, H. A.: Nonlinear acceleration of sequential fully implicit (sfi) method for coupled flow and transport in porous media (2018)

  31. Aitken, A.: Studies in practical mathematics. the evaluation of latent roots and latent vectors of a matrix. Proc. R. Soc. Edinburgh 57, 269 (1937)

    Google Scholar 

  32. Garbey, M.: Acceleration of the schwarz method for elliptic problems. SIAM J. Sci. Comput. 26, 1871–1893 (2005)

    Google Scholar 

  33. Jemcov, A., Maruszewski, J., Jasak, H.: Acceleration and Stabilization of Algebraic Multigrid Solver Applied to Incompressible Flow Problems. In: 18Th AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics (2007)

  34. Degroote, J., Bathe, K. -J., Vierendeels, J.: Performance of a new partitioned procedure versus a monolithic procedure in fluid–structure interaction. Comput. Struct. 87, 793–801 (2009)

    Google Scholar 

  35. Erbts, P., Düster, A.: Accelerated staggered coupling schemes for problems of thermoelasticity at finite strains. Comput. Math. Appl. 64, 2408–2430 (2012)

    Google Scholar 

  36. Aitken, A.: On bernoulli’s numerical solution of algebraic equations. Proc. R. Soc. Edinburgh 46, 289–305 (1926)

    Google Scholar 

  37. Plancq, D., Thouvenin, G., Ricaud, J., Struzik, C., Helfer, T., Bentejac, F., Thévenin, P., Masson, R.: Pleiades: a unified environment for multi-dimensional fuel performance modeling. International meeting on LWR fuel performance, Florida (2004)

  38. Jennings, A.: Accelerating the convergence of matrix iterative processes. IMA J. Appl. Math. 8, 99–110 (1971)

    Google Scholar 

  39. Richardson, L. F.: The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 210, 307–357 (1911)

    Google Scholar 

  40. Shanks, D.: Non-linear transformations of divergent and slowly convergent sequences. J. Math. Phys. 34, 1–42 (1955)

    Google Scholar 

  41. Petunin, V., Tutuncu, A., Prasad, M., Kazemi, H., Yin, X.: An experimental study for investigating the stress dependence of permeability in sandstones and carbonates, 45th U.S, Rock Mechanics / Geomechanics Symposium, pp. 9 (2011)

  42. de Souza Neto, E. A., Peri, D., Owen, D. R. J.: Computational Methods for Plasticity. Wiley, New York (2008)

  43. Devloo, P. R. B.: Object oriented tools for scientific computing. Eng. Comput. 16, 63–72 (2000)

    Google Scholar 

  44. Devloo, P. R. B., Bravo, C. M. A. A., Rylo, E. C.: Systematic and generic construction of shape functions for p-adaptive meshes of multidimensional finite elements. Comput. Methods Appl. Mech. Eng. 198, 1716–1725 (2009)

    Google Scholar 

  45. Farias, A. M.: New Formulations of Finite Element and Multiphysics Simulation. Ph.D. thesis, University State of Campinas (2014)

  46. Castro, D. A., Devloo, P. R., Farias, A. M., Gomes, S. M., de Siqueira, D., Durȧn, O.: Three dimensional hierarchical mixed finite element approximations with enhanced primal variable accuracy. Comput. Methods Appl. Mech. Eng. 306, 479–502 (2016)

    Google Scholar 

  47. Terzaghi, K: Wiley, New York (1943)

  48. Biot, M. A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185 (1955)

    Google Scholar 

  49. Coussy, O.: Poromechanics. Wiley, New York (2004)

  50. Rudnicki, J. W.: Fluid mass sources and point forces in linear elastic diffusive solids. Mech. Mater. 5, 383–393 (1986)

    Google Scholar 

  51. Cecílio, D. L., Devloo, P. R., Gomes, S. M., dos Santos, E. R., Shauer, N.: An improved numerical integration algorithm for elastoplastic constitutive equations. Comput. Geotech. 64, 1–9 (2015)

    Google Scholar 

  52. Hayakawa, K., Murakami, S., Liu, Y.: An irreversible thermodynamics theory for elastic-plastic-damage materials. Eur. J. Mech. - A/Solids 17, 13–32 (1998)

    Google Scholar 

  53. Lemaitre, J., Chaboche, J.-L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)

  54. Soares, A. C.: Um estudo da Influéncia do Estado de Tensoes na Permeabilidade de Rochas Produtoras de Petróleo. Tese De Doutorado Instituto De Geologia, Ph.D. thesis, Universidade Federal do Rio de Janeiro (2007)

  55. Santos, E., Borba, A., Ferreira, F.: Stress-dependent permeability measurement of indiana limestone and silurian dolomite samples in hydrostatic tests. International Society for Rock Mechanics and Rock Engineering, Goiania (2014)

  56. Detournay, E., Cheng, A. H. -D.: Fundamentals of Poroelasticity. In: Hudson, J. A. (ed.) Comprehensive Rock Comprehensive Rock Engineering: Principles, Practice & Projects, Analysis and Design Methods, pp 113–171 . Oxford University Press, Oxford (1993)

  57. Bui, T. A., Wong, H., Deleruyelle, F., Zhou, A., Lei, X.: A coupled poroplastic damage model accounting for cracking effects on both hydraulic and mechanical properties of unsaturated media. Int. J. Numer. Anal. Methods Geomech. 40, 625–650 (2016)

    Google Scholar 

  58. Zhou, H., Jia, Y., Shao, J.: A unified elastic–plastic and viscoplastic damage model for quasi-brittle rocks. Int. J. Rock Mech. Min. Sci. 45, 1237 – (1251)

    Google Scholar 

  59. da Silva, R., Murad, M., Obregon, J.: A New Fixed-Stress Split Scheme in Poroplastic Media Incorporating General Plastic Porosity Constitutive Theories. In: ECMOR XVI - 16Th European Conference on the Mathematics of Oil Recovery. EAGE Publications BV (2018)

  60. Xie, S. Y., Shao, J. F.: An experimental study and constitutive modeling of saturated porous rocks. Rock Mech. Rock. Eng. 48, 223–234 (2015)

    Google Scholar 

  61. Ertekin, T.: Basic Applied Reservoir Simulation. Society of Petroleum Engineers (2001)

  62. Kim, J., Sonnenthal, E. L., Rutqvist, J.: Formulation and sequential numerical algorithms of coupled fluid/heat flow and geomechanics for multiple porosity materials. Int. J. Numer. Methods Eng. 92, 425–456 (2012)

    Google Scholar 

  63. Both, J. W., Kumar, K., Nordbotten, J. M., Radu, F. A.: Anderson accelerated fixed-stress splitting schemes for consolidation of unsaturated porous media. Comput. Math. Appl. 77, 1479 – (2017). 7th International Conference on Advanced Computational Methods in Engineering (ACOMEN)

    Google Scholar 

  64. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Berlin (2013)

  65. Castelletto, N., Klevtsov, S., Hajibeygi, H., Tchelepi, H. A.: Multiscale two-stage solver for biot’s poroelasticity equations in subsurface media. Comput. Geosci. 23, 207–224 (2019)

    Google Scholar 

  66. White, J. A., Castelletto, N., Klevtsov, S., Bui, Q. M., Osei-Kuffuor, D., Tchelepi, H. A.: A two-stage preconditioner for multiphase poromechanics in reservoir simulation. Comput. Methods Appl. Mech. Eng. 357, 112575 (2019)

    Google Scholar 

  67. Sloan, S. W., Sheng, D., Abbo, A. J.: Accelerated initial stiffness schemes for elastoplasticity. Int. J. Numer. Anal. Methods Geomech. 24, 579–599 (2000)

    Google Scholar 

  68. Cordero, A., Hueso, J. L., Martínez, E., Torregrosa, J. R.: Increasing the convergence order of an iterative method for nonlinear systems. Appl. Math. Lett. 25, 2369 – (2374)

    Google Scholar 

  69. Xiao, X.-Y., Yin, H.-W.: Accelerating the convergence speed of iterative methods for solving nonlinear systems. Appl. Math. Comput. 333, 8–19 (2018)

    Google Scholar 

  70. Degroote, J., Haelterman, R., Annerel, S., Bruggeman, P., Vierendeels, J.: Performance of partitioned procedures in fluid–structure interaction. Comput. Struct. 88, 446–457 (2010)

    Google Scholar 

  71. Bogaers, A., Kok, S., Reddy, B., Franz, T.: An evaluation of quasi-newton methods for application to FSI problems involving free surface flow and solid body contact. Comput. Struct. 173, 71–83 (2016)

    Google Scholar 

  72. Liu, T., Bouaziz, S., Kavan, L.: Quasi-newton methods for real-time simulation of hyperelastic materials. ACM Trans. Graph. 36, 1–16 (2017)

    Google Scholar 

  73. Macleod, A. J.: Acceleration of vector sequences by multi-dimensional delta-square methods. Commun. Appl. Numer. Methods 2, 385–392 (1986)

    Google Scholar 

  74. Anderson, D. G. M.: Iterative procedures for nonlinear integral equations. J. ACM 12, 547–560 (1965)

    Google Scholar 

  75. Brezinski, C., Redivo-Zaglia, M., Saad, Y.: Shanks sequence transformations and anderson acceleration. SIAM Rev. 60, 646–669 (2018)

    Google Scholar 

Download references

Funding

The authors O. Duran, M. Sanei, and P.R.B. Devloo received financial support from the Brazilian National Agency of Petroleum, Natural Gas and Biofuels (ANP-PETROBRAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Duran.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A Runge-Kutta solver for poro-elastoplasticity: an axisymmetric approach—the linear poro-elastic case

To construct an Runge-Kutta approximation, it is required to review the poro-elastic equations and find a way to recast the equations as initial value problem, as the Runge-Kutta method structure:

$$ \frac{d\mathbf{y}}{d\mathbf{x}}=\mathbf{f}\left( \mathbf{y}\right) $$
(79)

There are three main considerations for this case:

  1. 1.

    The equations are presented in terms of the cylindrical coordinate system.

  2. 2.

    The approximation is axisymmetric, leading to a displacement u and pressure p fields that depend only of the radius , i.e., \(\mathbf {u}={\Phi }{\left (\mathrm {r}\right )}\) and \(p={\Phi }{\left (\mathrm {r}\right )}\).

  3. 3.

    Assume steady-state conditions, the initial value problem is described in terms of one independent variable r.

Recalling the linear elastic constitutive law:

$$ \begin{array}{@{}rcl@{}} \boldsymbol{\sigma} &= & 2\mu\left( \boldsymbol{\epsilon}-\boldsymbol{\epsilon}^{\circ}\right)+\lambda \text{tr}\left( \boldsymbol{\epsilon}-\boldsymbol{\epsilon}^{\circ}\right)\mathbf{I}-\sigma^{\circ}\mathbf{I}\\ \boldsymbol{\epsilon} & = &\frac{1}{2}\left( \nabla\mathbf{u}+\nabla^{T}\mathbf{u}\right) \end{array} $$
(80)

Using the considerations above \(\mathbf {u}=u_{r}\hat {\textbf {r}}\) and an initial 𝜖° = 0 the effective stress tensor becomes:

$$ \boldsymbol{\sigma}=\left( \mu_{r}+\lambda_{r}\right)\hat{\textbf{r}}\otimes\hat{\textbf{r}}+\left( \mu_{r}+\lambda_{r}\right)\hat{\boldsymbol{\theta}}\otimes\hat{\boldsymbol{\theta}}+\left( \lambda_{r}\right)\hat{\textbf{z}}\otimes\hat{\textbf{z}} $$
(81)

where \(\mu _{r}=2\mu \frac {du_{r}}{dr}\) and \(\lambda _{r}=\lambda \left (\frac {u_{r}}{r}+\frac {du_{r}}{dr}\right )\). Taking the trace of the expression above can be obtained the following expression for \(\frac {du_{r}}{dr}\):

$$ \frac{du_{r}}{dr}=\frac{r\sigma_{rr}-\lambda u_{r}}{r\left( \lambda+2\mu\right)} $$
(82)

Evoke the total stress σt equilibrium and using the Biot decomposition of the total stress:

$$ \text{div}\left( \boldsymbol{\sigma}-\sigma^{\circ}\mathbf{I}-\alpha(p-p^{\circ})\mathbf{I}\right)=0 $$
(83)

The expression for \(\frac {d\sigma _{rr}}{dr}\) is obtained from the momentum conservation directly:

$$ \frac{d\sigma_{rr}}{dr}=\frac{-\sigma_{rr}+\left( \frac{2\mu u_{r}}{r}+\lambda\left( \frac{u_{r}}{r}+\frac{r\sigma_{rr}-\lambda u_{r}}{r\left( \lambda+2\mu\right)}\right)\right)}{r}-\alpha\frac{\eta}{k}q_{r} $$
(84)

Also, the quantities σθθ and σzz are:

$$ \sigma_{\theta\theta}=\frac{2\mu u_{r}}{r}+\lambda\left( \frac{u_{r}}{r}+\frac{r\sigma_{rr}-\lambda u_{r}}{r\left( \lambda+2\mu\right)}\right) $$
(85)
$$ \sigma_{zz}=\frac{\lambda\left( \lambda\left( \sigma_{rr}+\sigma_{\theta\theta}\right)+2\mu\left( \sigma_{rr}+\sigma_{\theta\theta}\right)\right)}{2\left( \lambda+\mu\right)\left( \lambda+2\mu\right)} $$
(86)

Reinstate that Darcy constitutive expression provides the expression for \(\frac {dp}{dr}\):

$$ \frac{dp}{dr}=-\frac{\eta}{\kappa}q_{r} $$
(87)

Finally, the mass conservation equation affords the expression for \(\frac {dq_{r}}{dr}\):

$$ \frac{dq_{r}}{dr}=-\frac{q_{r}}{r} $$
(88)

Regarding the initial value problem, the spatial derivative for variable y is clearly:

$$ \frac{d\mathbf{y}}{d\mathbf{x}}=\left\{ \begin{array}{c} \frac{du_{r}}{dr}\\ \frac{d\sigma_{rr}}{dr}\\ \frac{dp}{dr}\\ \frac{dq_{r}}{dr} \end{array}\right\} \text{and} \mathbf{f}\left( \mathbf{y}\right)=\left\{ \begin{array}{c} \frac{r\sigma_{rr}-\lambda u_{r}}{r\left( \lambda+2\mu\right)}\\ \frac{-\sigma_{rr}+\left( \frac{2\mu u_{r}}{r}+\lambda\left( \frac{u_{r}}{r}+\frac{r\sigma_{rr}-\lambda u_{r}}{r\left( \lambda+2\mu\right)}\right)\right)}{r}-\alpha\frac{\eta}{k}q_{r}\\ -\frac{\eta}{\kappa}q_{r}\\ -\frac{q_{r}}{r} \end{array}\right\} $$
(89)

For the completeness of the initial value problem, the data y° is evaluated at the permeability reservoir radius re. It is important to point that the permeability can be one function of the state variable y in a nonlinear sense.

1.2 The poro-elastoplastic case

The expression (89) can be rewritten in terms of strain and stress data:

$$ \frac{d\mathbf{y}}{d\mathbf{x}}=\left\{ \begin{array}{c} \frac{du_{r}}{dr}\\ \frac{d\sigma_{rr}}{dr}\\ \frac{dp}{dr}\\ \frac{dq_{r}}{dr} \end{array}\right\} \text{and} \mathbf{f}\left( \mathbf{y}\right)=\left\{ \begin{array}{c} \epsilon_{rr}\\ \frac{-\sigma_{rr}+\sigma_{\theta\theta}}{r}-\alpha\frac{\eta}{k}q_{r}\\ -\frac{\eta}{\kappa}q_{r}\\ -\frac{q_{r}}{r} \end{array}\right\} $$
(90)

Thus, the approximation above can be recast as elastoplastic problem by delaying α, Kdr, and the elastoplastic strain between two consecutive points in order to consider the nonlinear effects of plasticity during the RK process. The payoff is a very similar implementation for the RK solver with the need of additional discrete points to reach a reasonable approximation.

For the completeness of the initial value problem, the data y° is evaluated at the permeability reservoir radius re where it is assumed to be linear poro-elastic data. For that reason, it is expected that as the number of discrete points is incremented the poro-elastoplastic approximation became more precise. It makes the RK solver a suitable approximation for comparison and/or verification purposes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duran, O., Sanei, M., Devloo, P.R.B. et al. An enhanced sequential fully implicit scheme for reservoir geomechanics. Comput Geosci 24, 1557–1587 (2020). https://doi.org/10.1007/s10596-020-09965-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-020-09965-2

Keywords

Navigation