Skip to main content
Log in

A novel approach for subsurface characterization of coupled fluid flow and geomechanical deformation: the case of slightly compressible flows

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We are concerned with stochastic methods for predictive simulations of flows in the subsurface that can incorporate dynamical data (such as pressure data and production curves in field-scale operations) to reduce uncertainty in determining time-dependent subsurface properties such as absolute permeability, porosity and Young’s modulus in the context of poroelasticity. There exists a considerable amount of work in the development of these methods with focus on rigid porous media. Procedures such as Markov chain Monte Carlo methods and Kalman filters have been considered for rock characterization and Monte Carlo simulations applied for predicting fluid flow. This is not the case with deformable subsurface formations. Although clearly relevant for the exploration of oil and gas, considerably less developments have been reported in this case. Difficulty arises because subsurface properties (typically modeled by time-independent random fields) change with time and known uncertainty quantification and reduction methods may not be directly applicable. Our goal here is the development of a Bayesian modeling framework that allows for the characterization of time-dependent rock properties along with the prediction of multiphase flows in such formations. The proposed framework has performed well to characterize time-dependent porosity and permeability fields in single-phase flows in heterogeneous deformable media, considering the concept of rock compressibility. Despite its simplicity, this problem gathers several characteristics of more complex models currently employed in the coupling of fluid flow and mechanical response of the reservoir solid structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbasi, N., Rahimi, H., Javadi, A., Fakher, A.: Finite difference approach for consolidation with variable compressibility and permeability. Comput. Geotech. 34(1), 41–52 (2007)

    Article  Google Scholar 

  2. Akbarabadi, M., Borges, M., Jan, A., Pereira, F., Piri, M.: A bayesian framework for the validation of models for subsurface flows: synthetic experiments. Computational Geosciences 19(6), 1231–1250 (2015). https://doi.org/10.1007/s10596-015-9538-z

    Article  Google Scholar 

  3. Azevedo, J.S., Murad, M.A., Borges, M.R., Oliveira, S.P.: A space–time multiscale method for computing statistical moments in strongly heterogeneous poroelastic media of evolving scales. Int. J. Numer. Methods Eng. 90(6), 671–706 (2012)

    Article  Google Scholar 

  4. Carman, P.C.: Fluid flow through granular beds. Chemical Engineering Research & Design 15, 150–156 (1937)

    Google Scholar 

  5. Chang, H., Chen, Y., Zhang, D., California, U.O.S.: Data assimilation of coupled fluid flow and geomechanics via ensemble Kalman filter 15(2), 382–394 (2010)

  6. Chen, Y., Zhang, D.: Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Adv. Water Resour. 29, 1107–1122 (2006)

    Article  Google Scholar 

  7. Correa, M., Borges, M.: A semi-discrete central scheme for scalar hyperbolic conservation laws with heterogeneous storage coefficient and its application to porous media flow. Int. J. Numer. Methods Fluids 73, 205–224 (2013). https://doi.org/10.1002/fld.3794

    Article  Google Scholar 

  8. Das, N.N., Mohanty, B.P., Efendiev, Y.: Characterization of effective saturated hydraulic conductivity in an agricultural field using Karhunen-Loève expansion with the Markov chain Monte Carlo technique 46. https://doi.org/10.1029/2008WR007100 (2010)

  9. Dostert, P., Efendiev, Y., Mohanty, B.: Efficient uncertainty quantification techniques in inverse problems for Richards’ equation using coarse-scale simulation models 32(3): 329–339. https://doi.org/10.1016/j.advwatres.2008.11.009 (2009)

  10. Douglas, J. Jr, Ewing, R.E., Wheeler, M.F.: The approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO Analyse Numérique/Numerical Analysis 17, 17–33 (1983)

    Article  Google Scholar 

  11. Efendiev, Y., Datta-Gupta, A., Ginting, V., Ma, X., Mallick, B.: An efficient two-stage Markov chain Monte Carlo method for dynamic data integration 41(12), 423 (2005)

  12. Efendiev, Y., Hou, T., Luo, W.: Preconditioning Markov Chain Monte Carlo simulations using coarse-scale models. SIAM J. Sci. Comput. 28, 776–803 (2006)

    Article  Google Scholar 

  13. Frías, D., Murad, M.A., Pereira, F.: Stochastic computational modeling of highly heterogeneous poroelastic media with long-range correlations. Int. J. Numer. Anal. Meth. Geomech. 28(1), 1–32 (2004)

    Article  Google Scholar 

  14. Gamerman, D., Lopes, H.F.: Markov Chain Monte Carlo: stochastic simulation for Bayesian inference. Chapman & Hall/CRC texts in Statistical Science Taylor & Francis (2006)

  15. Ganis, B., Girault, V., Mear, M., Singh, G., Wheeler, M.: Modeling fractures in a poro-elastic medium (2013)

  16. Ginting, V., Pereira, F., Presho, M., Wo, S.: Application of the two-stage Markov chain Monte Carlo method for characterization of fractured reservoirs using a surrogate flow model. Comput. Geosci. 15, 691–707 (2011)

    Article  Google Scholar 

  17. Ginting, V., Pereira, F., Rahunanthan, A.: Multiple Markov chains Monte Carlo approach for flow forecasting in porous media. Procedia Computer Science 5, 707–716 (2012)

    Article  Google Scholar 

  18. Glimm, J., Sharp, D.H.: Prediction and the quantification of uncertainty. Phys. D 133(1-4), 152–170 (1999)

    Article  Google Scholar 

  19. Gutierrez, M.S., Lewis, R.W.: Coupling of fluid flow and deformation in underground formations. J. Eng. Mech. 128(7), 779–787 (2002)

    Article  Google Scholar 

  20. Haario, H., Laine, M., Mira, A., Saksman, E.: Dram: efficient adaptive mcmc. Statistics and Computing 16(4), 339–354 (2006). https://doi.org/10.1007/s11222-006-9438-0

    Article  Google Scholar 

  21. Haario, H., Saksman, E., Tamminen, J.: Adaptive proposal distribution for random walk metropolis algorithm. Computational Statistics 14(3), 375–395 (1999). https://doi.org/10.1007/s001800050022

    Article  Google Scholar 

  22. Haario, H., Saksman, E., Tamminen, J.: An adaptive metropolis algorithm. Bernoulli 7 (2), 223–242 (2001). http://projecteuclid.org/euclid.bj/1080222083

    Article  Google Scholar 

  23. Huang, J., Griffiths, D., Fenton, G.: Probabilistic analysis of coupled soil consolidation. ASCE J. Geotechnical and Geoenvironmental Engrg. 136, 69–91 (2010)

    Article  Google Scholar 

  24. Huang, S.P., Quek, S.T., Phoon, K.K.: Convergence study of the truncated Karhunen-Loève expansion for simulation of stochastic processes. Int. J. Numer. Methods Eng. 52(9), 1029–1043 (2001)

    Article  Google Scholar 

  25. Iglesias, M.A., Law, K.J.H., Stuart, A.M.: Evaluation of gaussian approximations for data assimilation in reservoir models. Comput. Geosci., pp 1–35. https://doi.org/10.1007/s10596-013-9359-x (2013)

  26. Karhunen, K.: Zur spektraltheorie stochastischer prozesse. Ann. Acad. Sci Fennicae (1946)

  27. Kozeny, M.: Uber kapillare leitung des wassers im boden. Sitzber. Akad. Wiss. Wein, Math-naturw 136, Abt. II a, 277 (1927)

  28. Liu, J.S.: Monte Carlo Strategies in Scientific Computing. (Springer Series in Statistics), 1st edn., vol. 0. Springer, Berlin (2008). 2nd printing edn

    Google Scholar 

  29. Loève, M.M.: Probability theory. Princeton N.J (1955)

  30. Ma, X., Al-Harbi, M., Datta-Gupta, A., Efendiev, Y.: An efficient two-stage sampling method for uncertainty quantification in hystory matching geological models (2008)

  31. Mendes, M.A., Murad, M.A., Pereira, F.: A new computational strategy for solving two-phase flow in strongly heterogeneous poroelastic media of evolving scales. Int. J. Numer. Anal. Methods Geomech. 36(15), 1683–1716 (2012)

    Article  Google Scholar 

  32. Mondal, A., Efendiev, Y., Mallick, B., Datta-Gupta, A.: Bayesian uncertainty quantification for flows in heterogeneous porous media using reversible jump Markov chain Monte Carlo methods. Advances in Water Resources 33(3), 241–256 (2010)

    Article  Google Scholar 

  33. Murad, M.A., Borges, M., Obregón, J.A., Correa, M.: A new locally conservative numerical method for two-phase flow in heterogeneous poroelastic media. Comput. Geotech. 48(0), 192–207 (2013)

    Article  Google Scholar 

  34. Raviart, P.A., Thomas, J.M.: A mixed finite element method for second order elliptic problems. In: Wunderlich, W., Stein, E., Bathe, K.J. (eds.) Math. Aspects of the F.E.M., vol. 606, pp 292–315. Springer, Berlin (1977)

  35. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods (Springer Texts in Statistics) . Springer, New York (2005)

    Google Scholar 

  36. Vrugt, J.A., ter Braak, C.J.F., Clark, M.P., Hyman, J.M., Robinson, B.A.: Treatment of input uncertainty in hydrologic modeling: doing hydrology backward with markov chain monte carlo simulation. Water Resources Research 44(12), n/a–n/a (2008). https://doi.org/10.1029/2007WR006720. W00B09

    Article  Google Scholar 

  37. Vrugt, J.A., Ter Braak, C.J.F.: Dream(D): an adaptive Markov chain monte carlo simulation algorithm to solve discrete, noncontinuous, and combinatorial posterior parameter estimation problems. Hydrology and Earth System Sciences 15(12), 3701–3713 (2011). https://doi.org/10.5194/hess-15-3701-2011. http://www.hydrol-earth-syst-sci.net/15/3701/2011/

    Article  Google Scholar 

  38. Wilschut, F., Peters, E., Visser, K., Fokker, P.A., van Hooff, P.M.E.: Joint history matching of well data and surface subsidence observations using the ensemble kalman filter: a field study SPE-141690-MS. https://doi.org/10.2118/141690-MS (2011)

  39. Zoback, M.: Reservoir Geomechanics. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

Download references

Funding

This work is partially supported by grants from NSF-DMS1514808, the University of Texas at Dallas and CNPq - Brazil (237760/2012-6 and 400169/2014-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Borges.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, M.R., Pereira, F. A novel approach for subsurface characterization of coupled fluid flow and geomechanical deformation: the case of slightly compressible flows. Comput Geosci 24, 1693–1706 (2020). https://doi.org/10.1007/s10596-020-09980-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-020-09980-3

Keywords

Mathematics Subject Classification (2010)

Navigation