Skip to main content
Log in

Principal curves to nonlocal Lane–Emden systems and related maximum principles

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we develop a comprehensive study on principal eigenvalues and maximum and comparison principles related to the nonlocal Lane–Emden problem

$$\begin{aligned} \left\{ \begin{array}{llll} (-\Delta )^{s}u = \lambda \rho (x)\vert v\vert ^{\alpha -1}v & \mathrm{in} \ \ \Omega ,\\ (-\Delta )^{t}v = \mu \tau (x)\vert u\vert ^{\beta -1}u & \mathrm{in} \ \ \Omega ,\\ u= v=0 & \mathrm{in} \ \ {\mathbb {R}}^n{\setminus }\Omega , \end{array} \right. \end{aligned}$$

where \(\Omega \) is a smooth bounded open subset of \({\mathbb {R}}^n\) with \(n \ge 1\), \(s,t\in (0,1)\), \(\alpha , \beta > 0\) satisfy \(\alpha \beta =1\), \(\rho \) and \(\tau \) are positive continuous functions on \(\Omega \) and \((-\Delta )^{s}\) and \((-\Delta )^{t}\) stand for fractional Laplace operators with powers s and t, respectively. By mean of topological arguments, sub-supersolution method and maximum principles to nonlocal elliptic operators, we show that the set of principal eigenvalues \((\lambda ,\mu )\) of the above problem is nonempty and in addition can be parameterized by a curve located in the first quadrant of the cartesian plane which satisfies some properties as continuity, simplicity, local isolation, monotonicity and also asymptotes on the coordinates axes. Moreover, its components can be represented through a min–max type type formula. Using some of these properties, we characterize all couples \((\lambda , \mu ) \in {\mathbb {R}}^2\) such that (weak and strong) maximum and comparison principles associated to the above problem holds in \(\Omega \). As a byproduct, we derive results on existence and uniqueness of viscosity solution for fractional elliptic systems on bounded domains with sublinear behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Alziary, B., Fleckinger, J., Lécureux, M.-H.: Principal eigenvalue and Maximum principle for some elliptic systems defined on general domains with refined Dirichlet boundary condition. Commun. Math. Anal. 7, 1–11 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18, 620–709 (1976)

    MathSciNet  MATH  Google Scholar 

  3. Berestycki, H., Nirenberg, L., Varadhan, S.R.S.: The principal Eigenvalue and maximum principle for second order elliptic operators in general domains. Commun. Pure Appl. Math. 1, 47–92 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Birindelli, I., Mitidieri, E., Sweers, G.: Existence of the principal eigenvalue for cooperative elliptic systems in a general Domain, (Russian) Differ. Uravn 35, 325–333 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Brown, K.J., Lin, C.C.: On the existence of positive eigenfunctions for a eigenvalue problem with indefinite weight-function. J. Math. Anal. Appl. 75, 112–120 (1980)

    MathSciNet  MATH  Google Scholar 

  6. Caffarelli, L., Roquejoffre, J.M., Sire, Y.: Variational problems in free boundaries for the fractional Laplacian. J. Eur. Math. Soc. 12, 1151–1179 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Cantrell, R.S., Schmidt, K.: On the eigenvalue problem for coupled elliptic systems. SIAM J. Math. Anal. 17, 850–862 (1986)

    MathSciNet  MATH  Google Scholar 

  8. Chicco, M.: Some properties of the first eigenvalue and the first eigenfunction of linear second order elliptic partial differential equations in divergence form. Boll. Un. Mat. Ital. 5, 245–254 (1972)

    MathSciNet  MATH  Google Scholar 

  9. Clément, Ph, de Figueiredo, D.G., Mitidieri, E.: Positive solutions of semilinear elliptic systems. Commun. PDE 17, 923–940 (1992)

    MathSciNet  MATH  Google Scholar 

  10. de Figueiredo, D.G., Felmer, P.L.: On superquadratic elliptic systems. Trans. Am. Math. Soc. 343, 99–116 (1994)

    MathSciNet  MATH  Google Scholar 

  11. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Donsker, M.D., Varadhan, S.R.S.: On a variational formula for the principal eigenvalue for operators with maximum principle. Proc. Nat. Acad. Sci. 72, 780–783 (1975)

    MathSciNet  MATH  Google Scholar 

  13. Donsker, M.D., Varadhan, S.R.S.: On the principal eigenvalue of second order elliptic differential operators. Commun. Pure Appl. Math. 29, 595–621 (1976)

    MathSciNet  MATH  Google Scholar 

  14. Evans, L.C.: Partial differential equations. In: Graduate Studies in Mathematics, Vol. 19. AMS (1998)

  15. Felmer, P., Martínez, S.: Existence and uniqueness of positive solutions to certain differential systems. Adv. Differ. Equ. 4, 575–593 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Felsinger, M., Kassmann, M., Voigt, P.: The Dirichlet problem for nonlocal operators. Math. Z. 279, 779–809 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Fleckinger, J., Hernandez, J., de Thélin, F.: Existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 7, 159–188 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Goyal, S.: A note on the eigenvalues of \(p\)-fractional Hardy–Sobolev operator with indefinite weight. Math. Nachr. 292, 2189–2202 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Gossez, J.-P., Lami-Dozo, E.: On the principal eigenvalue of a second order linear elliptic problem. Arch. Rat. Mech. Anal. 89, 169–175 (1985)

    MathSciNet  MATH  Google Scholar 

  20. Hess, P.: On the eigenvalue problem for weakly coupled elliptic systems. Arch. Ration. Mech. Anal. 81, 51–159 (1983)

    MathSciNet  MATH  Google Scholar 

  21. Hess, P., Kato, T.: On some linear and nonlinear eigenvalue problems with an indefinite weight function. Comm. Part. Differ. Equ. 5, 999–1030 (1980)

    MathSciNet  MATH  Google Scholar 

  22. Hulshof, J., van der Vorst, R.C.A.M.: Differential systems with strongly indefinite variational structure. J. Funct. Anal. 114, 32–58 (1993)

    MathSciNet  MATH  Google Scholar 

  23. Krein, M.G., Rutman, M.A.: Linear operators leaving invariant a cone in a Banach space. Amer. Math. Soc. Transl. 10, 199–325 (1962)

    Google Scholar 

  24. Lam, K.-Y., Lou, Y.: On Cooperative Elliptic Systems: Principal Eigenvalue and Characterization of the Maximum Principle. https://people.math.osu.edu/lam.184/paper/cooperativenote.pdf

  25. Leite, E.J.F., Montenegro, M.: A priori bounds and positive solutions for non-variational fractional elliptic systems. Differ. Integr. Equ. 30, 947–974 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Leite, E.J.F., Montenegro, M.: On positive viscosity solutions of fractional Lane–Emden systems. Topol. Methods Nonlinear Anal. 53, 407–425 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Leite, E.J.F., Montenegro, M.: Maximum and comparison principles to Lane–Emden systems. J. Lond. Math. Soc. 101, 23–42 (2020)

    MathSciNet  MATH  Google Scholar 

  28. López-Gómez, J.: The maximum principle and the existence of principal eigenvalue for some linear weighted boundary value problems. J. Diff. Equ. 127, 263–294 (1996)

    MathSciNet  MATH  Google Scholar 

  29. López-Gómez, J., Molina-Meyer, M.: The maximum principle for cooperative weakly coupled elliptic systems and some applications. Diff. Int. Equ. 7, 383–398 (1994)

    MathSciNet  MATH  Google Scholar 

  30. Del Pezzo, L.M., Quaas, A.: Global bifurcation for fractional p-Laplacian and application. Z. Anal. Anwend. 35, 411–447 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Manes, A., Micheletti, A.M.: Un’estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine. Boll. Un. Mat. Ital. 7, 285–301 (1973)

    MathSciNet  MATH  Google Scholar 

  32. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematic, SIAM, Philadelphia (2001)

    Google Scholar 

  33. Mitidieri, E.: A Rellich type identity and applications. Commun. Part. Differ. Equ. 18, 125–151 (1993)

    MathSciNet  MATH  Google Scholar 

  34. Montenegro, M.: The construction of principal spectra curves for Lane–Emden systems and applications. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29, 193–229 (2000)

    MathSciNet  MATH  Google Scholar 

  35. Nussbaum, R.D., Pinchover, Y.: On variational principles for the generalized principal eigenvalue of second order elliptic operators and some applications. J. Anal. Math. 59, 161–177 (1992)

    MathSciNet  MATH  Google Scholar 

  36. Protter, M.H.: The generalized spectrum of second order elliptic systems. Rocky Mt. J. Math. 9, 503–518 (1979)

    MathSciNet  MATH  Google Scholar 

  37. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, Berlin (1984)

    MATH  Google Scholar 

  38. Quaas, A., Xia, A.: Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space. Calc. Var. Part. Differ. Equ. 526, 1–19 (2014)

    Google Scholar 

  39. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101, 275–302 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Ros-Oton, X., Serra, J.: The extremal solution for the fractional Laplacian. Calc. Var. Part. Differ. Equ. 50, 723–750 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Serrin, J., Zou, H.: Existence of positive entire solutions of elliptic Hamiltonian systems. Commun. Part. Differ. Equ. 23, 577–599 (1998)

    MathSciNet  MATH  Google Scholar 

  42. Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discret. Cont. Dyn. Syst. 33, 2105–2137 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Servadei, R., Valdinoci, E.: Weak and viscosity solutions of the fractional Laplace equation. Publ. Mat. 58, 133–154 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60, 67–112 (2007)

    MathSciNet  MATH  Google Scholar 

  45. Sweers, G.: Strong positivity in \(C({{\overline{\Omega }}})\) for elliptic systems. Math. Z. 209, 251–271 (1992)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was partially supported by Fapemig (Universal-APQ-00709-18). The second author was partially supported by CNPq (PQ 302670/2019-0, Universal 429870/2018-3) and Fapemig (PPM-00561-18). The authors are indebted to the anonymous referee for his/her careful reading and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Montenegro.

Additional information

Communicated by O.Savin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leite, E.J.F., Montenegro, M. Principal curves to nonlocal Lane–Emden systems and related maximum principles. Calc. Var. 59, 118 (2020). https://doi.org/10.1007/s00526-020-01770-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01770-0

Navigation