Skip to main content
Log in

Transient analysis of multiple interface cracks between two dissimilar functionally graded magneto-electro-elastic layers

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we examine the transient response of two bonded dissimilar functionally graded magneto-electro-elastic (MEE) layers with multiple interfacial cracks under magneto-electro-mechanical impacts. Material properties of the MEE layers are assumed to vary exponentially in the thickness direction of the layers. However, the rate of material properties gradation are different. First, the analytical solution is developed by considering a dynamic magneto-electro-elastic dislocation with time-dependent Burgers vector be situated at the interface of bonded layers by means of the Fourier and Laplace transform. The solutions are used to derive singular integral equations for the MEE layers containing interfacial cracks. Then, the integral equations are solved numerically for the density of dislocations on a crack surface. The dislocation densities are employed to determine the field intensity factors and the dynamic energy release rate. The effects of crack spacing and FGM exponent as well as crack interaction are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nan, C.W.: Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 6082–6088 (1994)

    Article  Google Scholar 

  2. Zhou, Z.G., Wu, L.Z., Wang, B.: The dynamic behavior of two collinear interface cracks in magneto-electro-elastic materials. Eur. J. Mech. A/Solids. 24, 253–262 (2005)

    Article  Google Scholar 

  3. Feng, W.J., Xue, Y., Zou, Z.Z.: Crack growth of an interface crack between two dissimilar magneto-electro-elastic materials under anti-plane mechanical and in-plane electric magnetic impact. Theor. Appl. Fract. Mech. 43, 376–394 (2005)

    Article  Google Scholar 

  4. Su, R.K.L., Feng, W.J., Liu, J.: Transient response of interface cracks between dissimilar magneto-electro-elastic strips under out-of-plane mechanical and in-plane magneto-electrical impact loads. Compos. Struct. 78, 119–128 (2007)

    Article  Google Scholar 

  5. Yong, H.D., Zhou, Y.H.: Transient response of a cracked magnetoelectroelastic strip under anti-plane impact. I. J. Solids Struct. 44, 705–717 (2007)

    Article  Google Scholar 

  6. peng, X.L., Li, X.F.: Transient response of the crack-tip field in a magnetoelectroelastic half-space with a functionally graded coating under impacts. Arch. Appl. Mech. 79, 1099–1113 (2009)

    Article  Google Scholar 

  7. Feng, W., Li, Y.S., Xu, Z.H.: impact transient response of an interfacial crack between dissimilar magnetoelectroelastic layers under magnetoelectromechanical loadings: mode I problem. Int. J. Solids Struct. 46, 3346–3356 (2009)

    Article  Google Scholar 

  8. Wang, B.L., Han, jC, Du, S.Y.: Transient fracture of a layered magnetoelectroelastic medium. Mech. Mater. 42, 354–364 (2010)

    Article  Google Scholar 

  9. Wünsche, M., Sáez, A., García-Sánchez, F., Zhang, C.: Transient dynamic crack analysis in linear magnetoelectroelastic solids bya hypersingular time-domain BEM. Eur. J. Mech. A/Solids 32, 118–130 (2012)

    Article  MathSciNet  Google Scholar 

  10. Zhou, Z.G., Pan, S.D., Wu, L.Z.: Basic solutions of multiple parallel symmetric mode-III cracks in functionally graded piezoelectric/piezomagnetic material plane. Appl. Math. Mech. 34, 1201–1224 (2013)

    Article  MathSciNet  Google Scholar 

  11. Hu, K., Chen, z: Dynamic response of a cracked magnetoelectroelastic layer sandwiched between two elastic layers. ZAMM Z. Angew. Math. Mech. 93, 676–687 (2013)

    Article  MathSciNet  Google Scholar 

  12. Pan, Sh, Zhou, Z.: Basic solutions of multiple parallel symmetric mode-III cracks in functionally graded piezoelectric/piezomagneticmaterial plane. Appl. Math. Mech. 34, 1201–1224 (2013)

    Article  MathSciNet  Google Scholar 

  13. Monfared, M.M., Bagheri, R.: Multiple interacting arbitrary shaped cracks in an FGM plane. Theor. Appl. Fract. Mech. 86, 161–170 (2016)

    Article  Google Scholar 

  14. Ershad, H., Bagheri, R., Noroozi, M.: Transient response of cracked nonhomogeneous substrate with piezoelectric coating by dislocation method. Math. Mech. Solids. 23, 1525–1536 (2018)

    Article  MathSciNet  Google Scholar 

  15. Ayatollahi, M., Monfared, M.M., Nourazar, M.: Analysis of multiple moving mode-III cracks in a functionally graded magnetoelectroelastic half-plane. J. Intell. Mater. Syst. Struct. 28, 2823–2834 (2017)

    Article  Google Scholar 

  16. Fartash, A.H., Ayatollahi, M., Bagheri, R.: Transient response of dissimilar piezoelectric layers with multiple interacting interface cracks. Appl. Math Model. 66, 508–526 (2019)

    Article  MathSciNet  Google Scholar 

  17. Ayatollahi, M., Fartash, A.H.: Multiple interfacial cracks in dissimilar piezoelectric layers under time harmonic loadings. Fatigue Fract. Eng. Mater. Struct. 42, 46–479 (2019)

    Article  Google Scholar 

  18. Zhao, X., Liu, J.X., Qian, C.F.: Transient fracture of a piezoelectric–piezomagnetic sandwich structure: anti-plane case. Acta Mech. 230, 1233–1246 (2019)

    Article  MathSciNet  Google Scholar 

  19. Erdogan, F., Gupta, G.D., Cook, T.S.: Numerical solution of integral equations. In: Sih, G.C. (ed.) Methods of Analysis and Solution of Crack Problems, pp. 368–425. Noordhoof, Leyden (1973)

    Chapter  Google Scholar 

  20. Bagheri, R., Ayatollahi, M., Mousavi, S.M.: Stress analysis of a functionally graded magneto-electro-elastic strip with multiple moving cracks. Math. Mechs. Solids. 22, 304–323 (2015)

    Article  MathSciNet  Google Scholar 

  21. Cohen, A.M.: Numerical Methods for Laplace Transform Inversion. Springer, Berlin (2007)

    MATH  Google Scholar 

  22. Song, Z.F., Sih, G.C.: Crack initiation behavior in magnetoelectroelastic composite under in-plane deformation. Theor. Appl. Fract. Mech. 39, 189–207 (2003)

    Article  Google Scholar 

  23. Bagheri, R., Monfared, M.M.: Magneto-electro-elastic analysis of a strip containing multiple embedded and edge cracks under transient loading. Acta Mech. 229, 4895–4913 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ayatollahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The functions in Eq. (13) are as follows:

$$\begin{aligned} R_{1} (\omega ,s)= & {} \frac{L_{3} (\omega ,s)V_{1} +L_{4} (\omega ,s)V_{2} +L_{5} (\omega ,s)V_{3} }{\kappa L_{1} (\omega ,s)V_{1} } \end{aligned}$$
(A1)
$$\begin{aligned} R_{2} (\omega ,s)= & {} \frac{L_{4} (\omega ,s)\mu _{110} -L_{5} (\omega ,s)d_{110} }{L_{2} (\omega ,s)V_{1} } \end{aligned}$$
(A2)
$$\begin{aligned} R_{3} (\omega ,s)= & {} \frac{L_{5} (\omega ,s)\varepsilon _{110} -L_{4} (\omega ,s)d_{110} }{L_{2} (\omega ,s)V_{1} } \end{aligned}$$
(A3)

where

$$\begin{aligned} V_{1}= & {} d_{110}^{2} -\mu _{110} \varepsilon _{110} \end{aligned}$$
(A4)
$$\begin{aligned} V_{2}= & {} d_{110} q_{150} -e_{150} \mu _{110} \end{aligned}$$
(A5)
$$\begin{aligned} V_{3}= & {} d_{110} e_{150} -q_{150} \varepsilon _{110} \end{aligned}$$
(A6)
$$\begin{aligned} L_{1} (\omega ,s)= & {} -\frac{(\gamma _{1} +\gamma )(\Delta _{1} -\gamma _{1} +\gamma )+(\gamma _{1} -\gamma )(\Delta _{1} +\gamma _{1} +\gamma )e^{-2\gamma _{1} h_{2} }}{\gamma _{1} +\gamma } \end{aligned}$$
(A7)
$$\begin{aligned} L_{2} (\omega ,s)= & {} -\frac{(\gamma _{2} +\gamma )(\Delta _{2} -\gamma _{2} +\gamma )+(\gamma _{2} -\gamma )(\Delta _{2} +\gamma _{2} +\gamma )e^{-2\gamma _{2} h_{2} }}{\gamma _{2} +\gamma } \end{aligned}$$
(A8)
$$\begin{aligned} L_{3} (\omega ,s)= & {} [{\Delta }'_{1} \kappa -{\Delta }'_{2} (e_{150} \alpha _{2} +q_{150} \alpha _{3} )]\,b_{z} +{\Delta }'_{2} (e_{150} b_{\phi } +q_{150} b_{\psi } ) \end{aligned}$$
(A9)
$$\begin{aligned} L_{4} (\omega ,s)= & {} {\Delta }'_{2} [(\varepsilon _{110} \alpha _{2} +d_{110} \alpha _{3} )b_{z} -\varepsilon _{110} b_{\phi } -d_{110} b_{\psi } ] \end{aligned}$$
(A10)
$$\begin{aligned} L_{5} (\omega ,s)= & {} {\Delta }'_{2} [(\alpha _{2} d_{110} +\alpha _{3} \mu _{110} )b_{z} -d_{110} b_{\phi } -\mu _{110} b_{\psi } ] \end{aligned}$$
(A11)

and

$$\begin{aligned} {\Delta }'_{1} (\omega ,s)= & {} \frac{(\gamma _{1}^{2} -\beta ^{2})(1-e^{-2\gamma _{1} h_{1} })}{\gamma _{1} (1+e^{-2\gamma _{1} h_{1} })\,-\beta (1-e^{-2\gamma _{1} h_{1} })} \end{aligned}$$
(A12)
$$\begin{aligned} {\Delta }'_{2} (\omega ,s)= & {} \frac{(\gamma _{2}^{2} -\beta ^{2})(1-e^{-2\gamma _{2} h_{1} })}{\gamma _{2} (1+e^{-2\gamma _{2} h_{1} })-\beta (1-e^{-2\gamma _{2} h_{1} })} \end{aligned}$$
(A13)

Appendix B

The kernels in Eq. (18) are:

$$\begin{aligned} K_{ij}^{11} (p,q,s)= & {} \frac{\kappa e^{\gamma (y_{i} -y_{j} )}}{\pi }\int _0^{+\infty } \left\{ \frac{(\gamma _{1} -\gamma )}{\omega }(1-e^{-2\gamma _{1} ((y_{i} -y_{j} )+h_{2} )})\Omega _{1} (\omega ,s)e^{\gamma _{1} (y_{i} -y_{j} )}\right. \nonumber \\&\left. +\frac{e^{\omega (y_{i} -y_{j} )}}{2}\right\} \sin (\omega (x_{i} -x_{j} ))\hbox {d}\omega \nonumber \\&+\frac{e^{\gamma (y_{i} -y_{j} )}}{\pi }\int _0^{+\infty } \left\{ \frac{(\gamma _{2} -\gamma )}{\omega }(1-e^{-2\gamma _{2} ((y_{i} -y_{j} )+h_{2} )})(e_{150} \Omega _{2} (\omega ,s)\right. \nonumber \\&+\,q_{150} \Omega _{3} (\omega ,s))e^{\gamma _{2} (y_{i} -y_{j} )} \nonumber \\&\left. -\frac{e^{\omega (y_{i} -y_{j} )}}{2}(e_{150} \alpha _{2} +q_{150} \alpha _{3} )\right\} \sin (\omega (x_{i} -x_{j} ))\hbox {d}\omega \nonumber \\&+\frac{e^{\gamma (y_{i} -y_{j} )}(-\kappa +\alpha _{2} e_{150} +\alpha _{3} q_{150} )}{2\pi }\frac{(x_{i} -x_{j} )}{(x_{i} -x_{j} )^{2}+(y_{i} -y_{j} )^{2}} \end{aligned}$$
(B1)
$$\begin{aligned} K_{ij}^{12} (p,q,s)= & {} \frac{\kappa e^{\gamma (y_{i} -y_{j} )}}{\pi }\int _0^{+\infty } \left\{ \frac{(\gamma _{1} -\gamma )}{\omega }(1-e^{-2\gamma _{1} ((y_{i} -y_{j} )+h_{2} )})\Delta _{1} (\omega ,s)e^{\gamma _{1} (y_{i} -y_{j} )}\right\} \nonumber \\&\sin (\omega (x_{i} -x_{j} ))\hbox {d}\omega \nonumber \\&+\frac{e^{\gamma (y_{i} -y_{j} )}}{\pi }\int _0^{+\infty } \left\{ \frac{(\gamma _{2} -\gamma )}{\omega }(1-e^{-2\gamma _{2} ((x_{i} -x_{j} )+h_{2} )})(e_{150} \Delta _{2} (\omega ,s)\right. \nonumber \\&+\,q_{150} \Delta _{3} (\omega ,s))e^{\gamma _{2} (y_{i} -y_{j} )} \nonumber \\&\left. +\frac{e_{150} e^{\omega (y_{i} -y_{j} )}}{2}\right\} \sin (\omega (x_{i} -x_{j} ))\hbox {d}\omega -\frac{e^{\gamma (y_{i} -y_{j} )}e_{150} }{2\pi }\frac{(x_{i} -x_{j} )}{(x_{i} -x_{j} )^{2}+(y_{i} -y_{j} )^{2}} \end{aligned}$$
(B2)
$$\begin{aligned} K_{ij}^{13}= & {} \frac{\kappa e^{\gamma (y_{i} -y_{j} )}}{\pi }\int _0^{+\infty } \left\{ \frac{(\gamma _{1} -\gamma )}{\omega }(1-e^{-2\gamma _{1} ((y_{i} -y_{j} )+h_{2} )})\Lambda _{1} (\omega ,s)e^{\gamma _{1} (y_{i} -y_{j} )}\right\} \nonumber \\&\sin (\omega (x_{i} -x_{j} ))\hbox {d}\omega \nonumber \\&+\frac{e^{\gamma (y_{i} -y_{j} )}}{\pi }\int _0^{+\infty } \left\{ \frac{(\gamma _{2} -\gamma )}{\omega }(1-e^{-2\gamma _{2} ((y_{i} -y_{j} )+h_{2} )})(e_{150} \Delta _{2} (\omega ,s)\right. \nonumber \\&+\,q_{150} \Delta _{3} (\omega ,s))e^{\gamma _{2} (y_{i} -y_{j} )}\nonumber \\&\left. +\frac{q_{150} e^{\omega (y_{i} -y_{j} )}}{2}\right\} \sin (\omega (x_{i} -x_{j} ))\hbox {d}\omega -\frac{q_{150} }{2\pi }\frac{(x_{i} -x_{j} )}{(x_{i} -x_{j} )^{2}+(y_{i} -y_{j} )^{2}} \end{aligned}$$
(B3)
$$\begin{aligned} K_{ij}^{21}= & {} \frac{e^{\gamma (y_{i} -y_{j} )}}{\pi }\int _0^{+\infty } \left\{ \frac{e^{\omega (y_{i} -y_{j} )}}{2}(\varepsilon _{110} \alpha _{2} +d_{110} \alpha _{3} )\right. \nonumber \\&-\frac{(\gamma _{2} -\gamma )}{\omega }[1-e^{-2\gamma _{2} ((y_{i} -y_{j} )+h_{2} )}] \nonumber \\&\left. \times (\varepsilon _{110} \Omega _{2} (\omega ,s)+d_{110} \Omega _{3} (\omega ,s))e^{\gamma _{2} (y_{i} -y_{j} )}\right\} \sin (\omega (y_{i} -y_{j} ))\hbox {d}\omega \, \nonumber \\&-\frac{e^{\gamma (y_{i} -y_{j} )}(\varepsilon _{110} \alpha _{2} +d_{110} \alpha _{3} )}{2\pi }\frac{(x_{i} -x_{j} )}{(x_{i} -x_{j} )^{2}+(y_{i} -y_{j} )^{2}} \end{aligned}$$
(B4)
$$\begin{aligned} K_{ij}^{22} (p,q,s)= & {} \,-\frac{e^{\gamma (y_{i} -y_{j} )}}{\pi }\int _0^{+\infty } \left\{ \frac{(\gamma _{2} -\gamma )}{\omega }(1-e^{-2\gamma _{2} ((y_{i} -y_{j} )+h_{2} )})(\varepsilon _{110} \Delta _{2} (\omega ,s)\right. \nonumber \\&+\,d_{110} \Delta _{3} (\omega ,s))e^{\gamma _{2} (y_{i} -y_{j} )}\nonumber \\&\left. +\frac{e^{\omega (y_{i} -y_{j} )}\varepsilon _{110} }{2}\right\} \sin (\omega (x_{i} -x_{j} ))\hbox {d}\omega +\frac{e^{\gamma (y_{i} -y_{j} )}\varepsilon _{110} }{2\pi }\frac{(x_{i} -x_{j} )}{(x_{i} -x_{j} )^{2}+(y_{i} -y_{j} )^{2}} \end{aligned}$$
(B5)
$$\begin{aligned} K_{ij}^{23} (p,q,s)= & {} -\frac{e^{\gamma (y_{i} -y_{j} )}}{\pi }\int _0^{+\infty } \left\{ \frac{(\gamma _{2} -\gamma )}{\omega }(1-e^{-2\gamma _{2} ((y_{i} -y_{j} )+h_{2} )})(\varepsilon _{110} \Lambda _{2} (\omega ,s)\right. \nonumber \\&+\,d_{110} \Lambda _{3} (\omega ,s))e^{\gamma _{2} (y_{i} -y_{j} )} \nonumber \\&\left. +\frac{e^{\omega (y_{i} -y_{j} )}d_{110} }{2}\right\} \sin (\omega (x_{i} -x_{j} ))\hbox {d}\omega \,+\frac{e^{\gamma (y_{i} -y_{j} )}d_{110} }{2\pi }\frac{(x_{i} -x_{j} )}{(x_{i} -x_{j} )^{2}+(y_{i} -y_{j} )^{2}} \end{aligned}$$
(B6)
$$\begin{aligned} K_{ij}^{31} (p,q,s)= & {} \frac{e^{\gamma (y_{i} -y_{j} )}}{\pi }\int _0^{+\infty } \left\{ \frac{e^{\omega (y_{i} -y_{j} )}}{2}(d_{110} \alpha _{2} +\mu _{110} \alpha _{3} )\right. \nonumber \\&-\frac{(\gamma _{2} -\gamma )}{\omega }[1-e^{-2\gamma _{2} ((y_{i} -y_{j} )+h_{2} )}] \nonumber \\&\left. \times (d_{110} \Omega _{2} (\omega ,s)+\mu _{110} \Omega _{3} (\omega ,s))e^{\gamma _{2} (y_{i} -y_{j} )}\right. \}\sin (\omega (x_{i} -x_{j} ))\hbox {d}\omega \nonumber \\&-\frac{e^{\gamma (y_{i} -y_{j} )}(d_{110} \alpha _{2} +\mu _{110} \alpha _{3} )}{2\pi }\frac{(x_{i} -x_{j} )}{(x_{i} -x_{j} )^{2}+(y_{i} -y_{j} )^{2}} \end{aligned}$$
(B7)
$$\begin{aligned} K_{ij}^{32}= & {} -\frac{e^{\gamma (y_{i} -y_{j} )}}{\pi }\int _0^{+\infty } \left\{ \frac{(\gamma _{2} -\gamma )}{\omega }(1-e^{-2\gamma _{2} ((y_{i} -y_{j} )+h_{2} )})(d_{110} \Delta _{2} (\omega ,s)\right. \nonumber \\&+\mu _{110} \Delta _{3} (\omega ,s))e^{\gamma _{2} (y_{i} -y_{j} )} \nonumber \\&\left. +\frac{e^{\omega (y_{i} -y_{j} )}d_{110} }{2}\right\} \sin (\omega (x_{i} -x_{j} ))\hbox {d}\omega +\frac{e^{\gamma (y_{i} -y_{j} )}d_{110} }{2\pi }\frac{(x_{i} -x_{j} )}{(x_{i} -x_{j} )^{2}+(y_{i} -y_{j} )^{2}} \end{aligned}$$
(B8)
$$\begin{aligned} K_{ij}^{33} (p,q,s)= & {} -\frac{e^{\gamma (y_{i} -y_{j} )}}{\pi }\int _0^{+\infty } \left\{ \frac{(\gamma _{2} -\gamma )}{\omega }(1-e^{-2\gamma _{2} ((y_{i} -y_{j} )+h_{2} )})(d_{110} \Lambda _{2} (\omega ,s)\right. \nonumber \\&+\mu _{110} \Lambda _{3} (\omega ,s))e^{\gamma _{2} (y_{i} -y_{j} )} \nonumber \\&\left. +\frac{e^{\omega (y_{i} -y_{j} )}\mu _{110} }{2}\right\} \sin (\omega (x_{i} -x_{j} ))\hbox {d}\omega +\frac{e^{\gamma (y_{i} -y_{j} )}\mu _{110} }{2\pi }\frac{(x_{i} -x_{j} )}{(x_{i} -x_{j} )^{2}+(y_{i} -y_{j} )^{2}} \end{aligned}$$
(B9)

In which:

$$\begin{aligned} \Omega _{1} (\omega ,s)= & {} \frac{a_{1} (\omega ,s)V_{1} +a_{2} (\omega ,s)V_{2} +a_{3} (\omega ,s)V_{3} }{\kappa L_{1} (\omega ,s)V_{1} } \end{aligned}$$
(B10)
$$\begin{aligned} \Omega _{2} (\omega ,s)= & {} \frac{a_{2} (\omega ,s)\mu _{110} -a_{3} (\omega ,s)d_{110} }{L_{2} (\omega ,s)V_{1} } \end{aligned}$$
(B11)
$$\begin{aligned} \Omega _{3} (\omega ,s)= & {} \frac{a_{3} (\omega ,s)\varepsilon _{110} -a_{2} (\omega ,s)d_{110} }{L_{2} (\omega ,s)V_{1} } \end{aligned}$$
(B12)
$$\begin{aligned} \Delta _{1} (\omega ,s)= & {} \frac{b_{1} (\omega ,s)V_{1} +b_{2} (\omega ,s)V_{2} +b_{3} (\omega ,s)V_{3} }{\kappa L_{1} (\omega ,s)V_{1} } \end{aligned}$$
(B13)
$$\begin{aligned} \Delta _{2} (\omega ,s)= & {} \frac{b_{2} (\omega ,s)\mu _{110} -b_{3} (\omega ,s)d_{110} }{L_{2} (\omega ,s)V_{1} } \end{aligned}$$
(B14)
$$\begin{aligned} \Delta _{3} (\omega ,s)= & {} \frac{b_{3} (\omega ,s)\varepsilon _{110} -b_{2} (\omega ,s)d_{110} }{L_{2} (\omega ,s)V_{1} } \end{aligned}$$
(B15)
$$\begin{aligned} \Lambda _{1} (\omega ,s)= & {} \frac{c_{1} (\omega ,s)V_{1} +c_{2} (\omega ,s)V_{2} +c_{3} (\omega ,s)V_{3} }{\kappa L_{1} (\omega ,s)V_{1} }\, \end{aligned}$$
(B16)
$$\begin{aligned} \Lambda _{2} (\omega ,s)= & {} \frac{c_{2} (\omega ,s)\mu _{110} -c_{3} (\omega ,s)d_{110} }{L_{2} (\omega ,s)V_{1} } \end{aligned}$$
(B17)
$$\begin{aligned} \Lambda _{3} (\omega ,s)= & {} \frac{c_{3} (\omega ,s)\varepsilon _{110} -c_{2} (\omega ,s)d_{110} }{L_{2} (\omega ,s)V_{1} } \end{aligned}$$
(B18)

where

$$\begin{aligned} a_{1} (\omega ,s)= & {} \frac{(\gamma _{2}^{2} -\beta ^{2})(e^{-2\gamma _{2} h_{1} }-1)(e_{150} \alpha _{2} +q_{150} \alpha _{3} b)}{[(\gamma _{2} -\beta )+(\gamma _{2} +\beta )e^{-2\gamma _{2} h_{1} }]}-\frac{\kappa (\gamma _{1}^{2} -\beta ^{2})(e^{-2\gamma _{1} h_{1} }-1)}{[(\gamma _{1} -\beta )\,+(\gamma _{1} +\beta )e^{-2\gamma _{1} h_{1} }]} \end{aligned}$$
(B19)
$$\begin{aligned} a_{2} (\omega ,s)= & {} \frac{(\gamma _{2}^{2} -\beta ^{2})(1-e^{-2\gamma _{2} h_{1} })(\varepsilon _{110} \alpha _{2} +d_{110} \alpha _{3} )}{[(\gamma _{2} -\beta )+(\gamma _{2} +\beta )e^{-2\gamma _{2} h_{1} }]} \end{aligned}$$
(B20)
$$\begin{aligned} a_{3} (\omega ,s)= & {} \frac{(\gamma _{2}^{2} -\beta ^{2})(1-e^{-2\gamma _{2} h_{1} })(d_{110} \alpha _{2} +\mu _{110} \alpha _{3} )}{[(\gamma _{2} -\beta )+(\gamma _{2} +\beta )e^{-2\gamma _{2} h_{1} }]} \end{aligned}$$
(B21)
$$\begin{aligned} b_{1} (\omega ,s)= & {} -\frac{e_{150} (\gamma _{2}^{2} -\beta ^{2})(e^{-2\gamma _{2} h_{1} }-1)}{[(\gamma _{2} -\beta )+(\gamma _{2} +\beta )e^{-2\gamma _{2} h_{1} }]} \end{aligned}$$
(B22)
$$\begin{aligned} b_{2} (\omega ,s)= & {} -\frac{\varepsilon _{110} (\gamma _{2}^{2} -\beta ^{2})(1-e^{-2\gamma _{2} h_{1} })}{[(\gamma _{2} -\beta )+(\gamma _{2} +\beta )e^{-2\gamma _{2} h_{1} }]} \end{aligned}$$
(B23)
$$\begin{aligned} b_{3} (\omega ,s)= & {} -\frac{d_{110} (\gamma _{2}^{2} -\beta ^{2})(1-e^{-2\gamma _{2} h_{1} })}{[(\gamma _{2} -\beta )+(\gamma _{2} +\beta )e^{-2\gamma _{2} h_{1} }]} \end{aligned}$$
(B24)
$$\begin{aligned} c_{1} (\omega ,s)= & {} -\frac{q_{150} (\gamma _{2}^{2} -\beta ^{2})(e^{-2\gamma _{2} h_{1} }-1)}{[(\gamma _{2} -\beta )+(\gamma _{2} +\beta )e^{-2\gamma _{2} h_{1} }]} \end{aligned}$$
(B25)
$$\begin{aligned} c_{2} (\omega ,s)= & {} -\frac{d_{110} (\gamma _{2}^{2} -\beta ^{2})(1-e^{-2\gamma _{2} h_{1} })}{[(\gamma _{2} -\beta )+(\gamma _{2} +\beta )e^{-2\gamma _{2} h_{1} }]} \end{aligned}$$
(B26)
$$\begin{aligned} c_{3} (\omega ,s)= & {} -\frac{\mu _{110} (\gamma _{2}^{2} -\beta ^{2})(1-e^{-2\gamma _{2} h_{1} })}{[(\gamma _{2} -\beta )+(\gamma _{2} +\beta )e^{-2\gamma _{2} h_{1} }]} \end{aligned}$$
(B27)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milan, A.G., Ayatollahi, M. Transient analysis of multiple interface cracks between two dissimilar functionally graded magneto-electro-elastic layers . Arch Appl Mech 90, 1829–1844 (2020). https://doi.org/10.1007/s00419-020-01699-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01699-y

Keywords

Navigation