Skip to main content
Log in

Buckling and free vibration of a side-cracked Mindlin plate under axial in-plane load

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, the buckling and free vibration of a Mindlin plate with a side crack are presented considering a uniaxial in-plane compressive or tensile load. The side crack is through the thickness of the plate. In the Ritz method, a series of corner functions are incorporated into the admissible functions which consist of the modified characteristic functions. With this treatment, one can describe the singularity in stress near the tip of the crack as well as the discontinuities in both displacement and bending rotations across the crack. The buckling loads and natural frequencies are solved through eigenvalue problems considering the existence of the crack. The effects of location, length and orientation of the crack on the buckling and free vibration of the loaded plate are demonstrated. The coupling effect of the crack and the in-plane load on the vibrational characteristics of the plate is analyzed with varying parameters. It is shown that the influences of the tensile and compressive preloads are enhanced by the crack, and the tensile preload can cause the low-order frequency to increase with the growing crack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells, 2nd edn. CRC Press, New York (2006)

    Book  Google Scholar 

  2. Talebitooti, R., Johari, V., Zarastvand, M.: Wave transmission across laminated composite plate in the subsonic flow investigating two-variable refined plate theory. Lat. Am. J. Solids Struct. (2018). https://doi.org/10.1590/1679-78254352

  3. Talebitooti, R., Zarastvand, M., Rouhani, A.S.: Investigating hyperbolic shear deformation theory on vibroacoustic behavior of the infinite functionally graded thick plate. Lat. Am. J. Solids Struct. 16, 1–17 (2019)

    Article  Google Scholar 

  4. Stahl, B., Keer, L.M.: Vibration and stability of cracked rectangular plates. Int. J. Solids Struct. 8(1), 69–91 (1972)

    Article  Google Scholar 

  5. Aggarwala, B.D., Ariel, P.D.: Vibration and bending of a cracked plate. Rozpr. Inzynierskie 29(2), 295–310 (1981)

    MATH  Google Scholar 

  6. Neku, K.: Free vibration of a simply-supported rectangular plate with a straight through-notch. Bull. Jpn. Soc. Mech. Eng. 25(199), 16–23 (1982)

    Article  Google Scholar 

  7. Solecki, R.: Bending vibration of a simply supported rectangular plate with a crack parallel to one edge. Eng. Fract. Mech. 18(6), 1111–1118 (1983)

    Article  Google Scholar 

  8. Qian, G.L., Gu, S.N., Jiang, J.S.: A finite element model of cracked plates and application to vibration problems. Comput. Struct. 39(5), 483–487 (1991)

    Article  Google Scholar 

  9. Krawczuk, M.: Natural vibrations of rectangular plates with a through crack. Arch. Appl. Mech. 63, 491–504 (1993)

    MATH  Google Scholar 

  10. Bachene, M., Tiberkak, R., Rechak, S.: Vibration analysis of cracked plates using the extended finite element method. Arch. Appl. Mech. 79(3), 249–262 (2009)

    Article  Google Scholar 

  11. Yu, T., Bui, T.Q., Liu, P., Hirose, S.: A stabilized discrete shear gap extended finite element for the analysis of cracked Reissner–Mindlin plate vibration problems involving distorted meshes. Int. J. Mech. Mater. Des. 12(1), 85–107 (2016)

    Article  Google Scholar 

  12. Yuan, J., Dickinson, S.M.: The flexural vibration of rectangular plate systems approached by using artificial springs in the Rayleigh–Ritz method. J. Sound. Vib. 159(1), 39–55 (1992)

    Article  Google Scholar 

  13. Liew, K.M., Hung, K.C., Lim, M.K.: A solution method for analysis of cracked plates under vibration. Eng. Fract. Mech. 48(3), 393–404 (1994)

    Article  Google Scholar 

  14. Khadem, S.E., Rezaee, M.: Introduction of modified comparison functions for vibration analysis of a rectangular cracked plate. J. Sound Vib. 236(2), 245–58 (2000)

    Article  Google Scholar 

  15. Huang, C.S., Leissa, A.W.: Vibration analysis of rectangular plates with side cracks via the Ritz method. J. Sound Vib. 323(3–5), 974–988 (2009)

    Article  Google Scholar 

  16. Xue, J., Wang, Y.: Free vibration analysis of a flat stiffened plate with side crack through the Ritz method. Arch. Appl. Mech. 89, 2089–2102 (2019)

    Article  Google Scholar 

  17. Kumar, Y.: The Rayleigh–Ritz method for linear dynamic, static and buckling behavior of beams, shells and plates: a literature review. J. Vib. Control 24(7), 1205–27 (2018)

    Article  MathSciNet  Google Scholar 

  18. Zeng, H.C., Huang, C.S., Leissa, A.W., Chang, M.J.: Vibrations and stability of a loaded side-cracked rectangular plate via the MLS-Ritz method. Thin-Walled Struct. 106, 459–470 (2016)

    Article  Google Scholar 

  19. Moreno-García, P., dos Santos, J.V.A., Lopes, H.: A review and study on Ritz method admissible functions with emphasis on buckling and free vibration of isotropic and anisotropic beams and plates. Arch. Comput. Methods Eng. 25, 785 (2018)

    Article  MathSciNet  Google Scholar 

  20. Gartner, J.R., Olgac, N.: Improved numerical computation of uniform beam characteristic values and characteristic functions. J. Sound Vib. 84, 481–489 (1982)

    Article  Google Scholar 

  21. Huang, C.S., Leissa, A.W., Li, R.S.: Accurate vibration analysis of thick, cracked rectangular plates. J. Sound Vib. 330, 2079–2093 (2011)

    Article  Google Scholar 

  22. Yang, G., Hu, D., Han, X., Ma, G.: An extended edge-based smoothed discrete shear gap method for free vibration analysis of cracked Reissner–Mindlin plate. Appl. Math. Model. 51, 477–504 (2017)

    Article  MathSciNet  Google Scholar 

  23. Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley, New York (2004)

    Book  Google Scholar 

  24. Talebitooti, R., Zarastvand, M.R.: The effect of nature of porous material on diffuse field acoustic transmission of the sandwich aerospace composite doubly curved shell. Aerosp. Sci. Technol. 78, 157–170 (2018)

    Article  Google Scholar 

  25. Talebitooti, R., Zarastvand, M.R., Gohari, H.D.: Investigation of power transmission across laminated composite doubly curved shell in the presence of external flow considering shear deformation shallow shell theory. J. Vib. Control 24, 4492–4504 (2018)

    Article  MathSciNet  Google Scholar 

  26. Darvish Gohari, H., Zarastvand, M.R., Talebitooti, R.: Acoustic performance prediction of a multilayered finite cylinder equipped with porous foam media. J. Vib. Control (2020). https://doi.org/10.1177/1077546319890025

  27. Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J Appl. Mech. 12, 69–77 (1945)

    MathSciNet  MATH  Google Scholar 

  28. Mindlin, R.D.: Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. 18, 31–8 (1951)

    MATH  Google Scholar 

  29. Moradi, S., Makvandi, H., Poorveis, D., Shirazi, K.H.: Free vibration analysis of cracked postbuckled plate. Appl. Math. Model. 66, 611–627 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China through Grants U1808214 and 11172011 and the Fundamental Research Funds for the Central Universities of China (DUT18ZD221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xue.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Wang, Y. & Chen, L. Buckling and free vibration of a side-cracked Mindlin plate under axial in-plane load. Arch Appl Mech 90, 1811–1827 (2020). https://doi.org/10.1007/s00419-020-01698-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01698-z

Keywords

Navigation