Skip to main content
Log in

Investigation on response function of terahertz air coherent detection technique

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Terahertz (THz) air coherent detection is a broadband coherent detection technique, which has been used widely in the THz science and technology. In this paper, a frequency-dependent response function of THz air coherent detection is defined based on the nonlinear polarization of gas molecules induced by the ultrashort laser pulses and the THz pulses. Calculations show that the response function of this technique has a half of Gaussian-like profile, which has a high sensitivity in the low frequency range and low sensitivity in the high frequency range of THz waves. Two fitted functions are given based on the calculated results, which can provide a good reference bandwidth when using the air coherent detection with a given probe laser pulse. The distortions of THz pulses induced by the air coherent detection in the detection process are discussed as well. This study will help to understand the response bandwidth and the limitation of detection bandwidth of the air coherent detection technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D.M. Mittleman, J. Appl. Phys. 122, 230901 (2017)

    Article  Google Scholar 

  2. P.U. Jepsen, D.G. Cooke, M. Koch, Laser Photonics Rev. 5, 124 (2011)

    Article  ADS  Google Scholar 

  3. T. Kampfrath, K. Tanaka, K.A. Nelson, Nat. Photonics 7, 680 (2013)

    Article  ADS  Google Scholar 

  4. J. Hebling, K.-L. Yeh, M. Hoffmann, K.A. Nelson, IEEE J. Sel. Top. Quantum Electron. 14, 345 (2008)

    Article  ADS  Google Scholar 

  5. D.H. Auston, K.P. Cheung, P.R. Smith, Appl. Phys. Lett. 45, 284 (1984)

    Article  ADS  Google Scholar 

  6. P.R. Smith, D.H. Auston, M.C. Nuss, IEEE J. Quan. Electron. 24, 255 (1989)

    Article  ADS  Google Scholar 

  7. Q. Wu, X.C. Zhang, Appl. Phys. Lett. 24, 3523 (1995)

    Article  ADS  Google Scholar 

  8. J. Dai, X. Xie, X.C. Zhang, Phys. Rev. Lett. 97, 103903 (2006)

    Article  ADS  Google Scholar 

  9. N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, K. Johnson, Appl. Phys. Lett. 92, 011131 (2008)

    Article  ADS  Google Scholar 

  10. J. Dai, J. Liu, X.C. Zhang, IEEE J. Sel. Top. Quan. Electron. 17, 183 (2011)

    Article  ADS  Google Scholar 

  11. D. Grischkowsky, S. Keiding, M. van Exter, Ch Fattinger, J. Opt. Soc. Am. B 7, 2006 (1990)

    Article  ADS  Google Scholar 

  12. P.U. Jepsen, R.H. Jacobsen, S.R. Keiding, J. Opt. Soc. Am. B 13, 2424 (1996)

    Article  ADS  Google Scholar 

  13. Q. Chen, M. Tani, Z. Jiang, X.C. Zhang, J. Opt. Soc. Am. B 18, 823 (2001)

    Article  ADS  Google Scholar 

  14. G. Gallot, J. Zhang, R.W. McGowan, T.I. Jeon, D. Grischkowsky, Appl. Phys. Lett. 74, 3450 (1999)

    Article  ADS  Google Scholar 

  15. A. Leitenstorfer, S. Hunsche, J. Shah, M.C. Nuss, W.H. Knox, Appl. Phys. Lett. 74, 1516 (1999)

    Article  ADS  Google Scholar 

  16. K. Reimann, Rep. Prog. Phys. 70, 1597 (2007)

    Article  ADS  Google Scholar 

  17. H.A. Hafez, S. Kovalev, J.C. Deinert et al., Nature 561, 507 (2018)

    Article  ADS  Google Scholar 

  18. R.W. Boyd, Nonlinear optics 3rd Edition. Academic Press, p 27

  19. A. Sommer, E.M. Bothschafter, S.A. Sato, C. Jakubeit, T. Latka, O. Razskazovskaya, H. Fattahi, M. Jobst, W. Schweinberger, V. Shirvanyan, V.S. Yakovlev, R. Kienberger, K. Yabana, N. Karpowicz, M. Schultze, F. Krausz, Nature 534, 86 (2016)

    Article  ADS  Google Scholar 

  20. MTh Hassan, T.T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A.M. Zheltikov, V. Pervak, F. Krausz, E. Goulielmakis, Nature 530, 66 (2016)

    Article  ADS  Google Scholar 

  21. A.V. Borodin, M.N. Esaulkov, A.A. Frolov, A.P. Shkurinov, V.Y. Panchenko, Opt. Lett. 39, 4092 (2014)

    Article  ADS  Google Scholar 

  22. E. Matsubara, M. Nagai, M. Ashida, J. Opt. Soc. Am. B 30, 1627 (2013)

    Article  ADS  Google Scholar 

  23. Z. Lu, D. Zhang, C. Meng, L. Sun, Z. Zhou, Z. Zhao, J. Yuan, Appl. Phys. Lett. 101, 081119 (2012)

    Article  ADS  Google Scholar 

  24. T. Wang, K. Iwaszczuk, E.A. Wrisberg, E.V. Denning, P.U. Jepsen, J. Infrared Milli. Terahz. Waves 37, 592 (2016)

    Article  Google Scholar 

  25. J. Zhao, L. Zhang, Y. Luo, T. Wu, C. Zhang, Y. Zhao, Chin. Opt. Lett. 12, 083201 (2014)

    Article  ADS  Google Scholar 

  26. X. Lu, X.C. Zhang, Appl. Phys. Lett. 98, 151111 (2011)

    Article  ADS  Google Scholar 

  27. V.A. Andreeva, O.G. Kosareva, N.A. Panov, D.E. Shipilo, P.M. Solyankin, M.N. Esaulkov, P.G. de Martínez, A.P. Shkurinov, V.A. Makarov, L. Bergé, S.L. Chin, Phys. Rev. Lett. 116, 63902 (2016)

    Article  ADS  Google Scholar 

  28. A. Tomasino, A. Mazhorova, M. Clerici, M. Peccianti, S.P. Ho, Y. Jestin, A. Pasquazi, A. Markov, X. Jin, R. Piccoli, S. Delprat, M. Chaker, A. Busacca, J. Ali, L. Razzari, R. Morandotti, Optica 4, 1358 (2017)

    Article  ADS  Google Scholar 

  29. T.I. Oh, Y.S. You, N. Jhajj, E.W. Rosenthal, H.M. Milchberg, K.Y. Kim, New J. Phys. 15, 075002 (2013)

    Article  ADS  Google Scholar 

  30. G. Rodriguez, G.L. Dakovski, Opt. Express 18, 15130 (2010)

    Article  ADS  Google Scholar 

  31. I. Dey, K. Jana, V.Y. Fedorov, A.D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A.D. Lad, S. Tzortzakis, A. Couairon, G.R. Kumar, Nat. Commun. 8, 1184 (2017)

    Article  ADS  Google Scholar 

  32. H.W. Du, F. Tang, D.Y. Zhang, W. Sheng, J.Y. Mao, J. Appl. Phys. 124, 143101 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation (Grant No. 20192BAB202008) of Jiangxi Province, China, and the Research Startup Program of Nanchang Hangkong University. The author gratefully acknowledges useful discussions with Dr. Chan-Shan Yang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Wei Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, HW. Investigation on response function of terahertz air coherent detection technique. Appl. Phys. B 126, 124 (2020). https://doi.org/10.1007/s00340-020-07477-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07477-6

Navigation