Skip to main content
Log in

Barycenters in the Hellinger–Kantorovich Space

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

Recently, Liero, Mielke and Savaré introduced the Hellinger–Kantorovich distance on the space of nonnegative Radon measures of a metric space X. We prove that Hellinger–Kantorovich barycenters always exist for a class of metric spaces containing of compact spaces and Polish \(\mathrm{CAT}(1)\) spaces; and if we assume further some conditions on the data, such barycenters are unique. We also introduce homogeneous multimarginal problems and illustrate some relations between their solutions and Hellinger–Kantorovich barycenters. Our results are analogous to the work of Agueh and Carlier for Wasserstein barycenters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agueh, M., Carlier, G.: Barycenters in the Wasserstein space. SIAM J. Math. Anal. 43(2), 904–924 (2011)

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, 2nd edn. Birkhäuser Verlag, Basel (2008)

    MATH  Google Scholar 

  3. Bačák, M.: Convex Analysis and Optimization in Hadamard Spaces, De Gruyter Series in Nonlinear Analysis and Applications, vol. 22. De Gruyter, Berlin (2014)

    MATH  Google Scholar 

  4. Boissard, E., Le Gouic, T., Loubes, J.-M.: Distribution’s template estimate with Wasserstein metrics. Bernoulli 21(2), 740–759 (2015)

    Article  MathSciNet  Google Scholar 

  5. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer, Berlin (1999)

    Google Scholar 

  6. Brown, L.D., Purves, R.: Measurable selections of extrema. Ann. Stat. 1, 902–912 (1973)

    MathSciNet  MATH  Google Scholar 

  7. Carlier, G., Oberman, A., Oudet, E.: Numerical methods for matching for teams and Wasserstein barycenters. ESAIM Math. Model. Numer. Anal. 49(6), 1621–1642 (2015)

    Article  MathSciNet  Google Scholar 

  8. Chizat, L., Peyré, G., Schmitzer, B., Vialard, F.-X.: Unbalanced optimal transport: dynamic and Kantorovich formulations. J. Funct. Anal. 274(11), 3090–3123 (2018)

    Article  MathSciNet  Google Scholar 

  9. Chung, N.-P., Trinh, T.-S.: Barycenters in generalized Wasserstein spaces. arXiv:1909.05517

  10. Ekeland, I., Témam, R.: Convex Analysis and Variational Problems, Classics in Applied Mathematics, 28, Corrected reprint of the 1976 English edition, Translated from the French, Society for Industrial and Applied Mathematics. SIAM), Philadelphia, PA (1999)

  11. Friesecke, G., Matthes, D., Schmitzer, B.: Barycenters for the Hellinger-Kantorovich distance over \(\mathbb{R}^d\). arXiv:1910.14572

  12. Gangbo, W., Świȩch, A.: Optimal maps for the multidimensional Monge-Kantorovich problem. Commun. Pure Appl. Math. 51(1), 23–45 (1998)

    Article  MathSciNet  Google Scholar 

  13. Kim, Y.-H., Pass, B.: A general condition for Monge solutions in the multi-marginal optimal transport problem. SIAM J. Math. Anal. 46(2), 1538–1550 (2014)

    Article  MathSciNet  Google Scholar 

  14. Kim, Y.-H., Pass, B.: Multi-marginal optimal transport on Riemannian manifolds. Am. J. Math. 137(4), 1045–1060 (2015)

    Article  MathSciNet  Google Scholar 

  15. Kim, Y.-H., Pass, B.: Wasserstein barycenters over Riemannian manifolds. Adv. Math. 307, 640–683 (2017)

    Article  MathSciNet  Google Scholar 

  16. Kondratyev, S., Vorotnikov, D.: Spherical Hellinger-Kantorovich gradient flows. SIAM J. Math. Anal. 51(3), 2053–2084 (2019)

    Article  MathSciNet  Google Scholar 

  17. Kondratyev, S., Monsaingeon, L., Vorotnikov, D.: A new optimal transport distance on the space of finite Radon measures. Adv. Differ. Equ. 21(11–12), 1117–1164 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Le Gouic, T., Loubes, J.-M.: Existence and consistency of Wasserstein barycenters. Probab. Theory Relat. Fields 168(3–4), 901–917 (2017)

    Article  MathSciNet  Google Scholar 

  19. Liero, M., Mielke, A., Savaré, G.: Optimal transport in competition with reaction: the Hellinger-Kantorovich distance and geodesic curves. SIAM J. Math. Anal. 48(4), 2869–2911 (2016)

    Article  MathSciNet  Google Scholar 

  20. Liero, M., Mielke, A., Savaré, G.: Optimal entropy-transport problems and a new Hellinger-Kantorovich distance between positive measures. Invent. Math. 211(3), 969–1117 (2018)

    Article  MathSciNet  Google Scholar 

  21. Pass, B.: Uniqueness and Monge solutions in the multimarginal optimal transportation problem. SIAM J. Math. Anal. 43(6), 2758–2775 (2011)

    Article  MathSciNet  Google Scholar 

  22. Pass, B.: Optimal transportation with infinitely many marginals. J. Funct. Anal. 264(4), 947–963 (2013)

    Article  MathSciNet  Google Scholar 

  23. Piccoli, B., Rossi, F.: Generalized Wasserstein distance and its application to transport equations with source. Arch. Ration. Mech. Anal. 211(1), 335–358 (2014)

    Article  MathSciNet  Google Scholar 

  24. Rabin, J., Peyré, G., Delon, J., Bernot, M.: Barycenter, Wasserstein, Application, Its, to Texture Mixing, Scale Space and Variational Methods in Computer Vision: Lecture Notes in Computer Science, vol. 2012, pp. 435–446. Springer, Berlin (2011)

  25. Rockafellar, R.T.: Integrals which are convex functionals. II. Pac. J. Math. 39, 439–469 (1971)

    Article  MathSciNet  Google Scholar 

  26. Srivastava, S., Li, C., Dunson, D.B.: Scalable Bayes via barycenter in Wasserstein space. J. Mach. Learn. Res. 19(1), 312–346 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Sturm, K.-T.: Probability Measures on Metric Spaces of Nonpositive Curvature, Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces. Paris: Contemp. Math., vol. 338, pp. 357–390. Amer. Math. Soc. Providence, RI (2002)

  28. Villani, C.: Optimal Transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338. Springer-Verlag, Berlin (2009)

    Google Scholar 

Download references

Acknowledgements

Part of this paper was carried out when N. P. Chung visited University of Science, Vietnam National University at Ho Chi Minh city in summer 2019. He thanks the math department there for its warm hospitality. The authors were partially supported by the National Research Foundation of Korea (NRF) Grants funded by the Korea Government No. NRF-2016R1A5A1008055 , No. NRF-2016R1D1A1B03931922 and No. NRF-2019R1C1C1007107. We thank the anonymous referee for her/his useful comments which vastly improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nhan-Phu Chung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, NP., Phung, MN. Barycenters in the Hellinger–Kantorovich Space. Appl Math Optim 84, 1791–1820 (2021). https://doi.org/10.1007/s00245-020-09695-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-020-09695-y

Keywords

Mathematics Subject Classification

Navigation