Skip to main content
Log in

S-doped reduced graphene oxide: a novel peroxidase mimetic and its application in sensitive detection of hydrogen peroxide and glucose

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This article presents a novel peroxidase mimetic by doping S atoms into reduced graphene oxide (rGO), which was synthesized through a facile hydrothermal reaction without any templates or surfactants. The peroxidase-like activity of S-doped rGO (S-rGO) is greatly boosted compared with the pristine rGO, demonstrating the peroxidase-like active sites are dominantly originated in sulfur-containing groups. The steady-state kinetic studies further indicate that S-rGO obeys the typical Michaelis-Menten curves and has a much smaller Michaelis constant (Km) for hydrogen peroxide (H2O2) and 3, 3′, 5, 5′-tetramethylbenzidine (TMB). In view of the outstanding performance of S-rGO as a peroxidase mimetic, an efficient and sensitive colorimetric detection platform for H2O2 and glucose has been successfully established. The linear detection for H2O2 is obtained in a range of 0.1–1 μM with an extremely lower detection limit of 0.042 μM, and glucose can be measured in a linear range of 1–100 μM, giving a detection limit of 0.38 μM. This study not only provides a new avenue for the reasonable design of heteroatom-doped carbon-based nanomaterials but also offers meaningful reference for detecting the important biomolecules in biotechnology.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yu N, Cai T, Sun Y, Jiang C, Xiong H, Li Y, et al. A novel antibacterial agent based on AgNPs and Fe3O4 loaded chitin microspheres with peroxidase-like activity for synergistic antibacterial activity and wound-healing. Int J Pharm. 2018;552(1):277–87.

    Article  CAS  PubMed  Google Scholar 

  2. Ma C, Ma Y, Sun Y, Lu Y, Tian E, Lan J, et al. Colorimetric determination of Hg2+ in environmental water based on the Hg2+-stimulated peroxidase mimetic activity of MoS2-Au composites. J Colloid Interface Sci. 2019;537:554–61.

    Article  CAS  PubMed  Google Scholar 

  3. Liu H, Ding Y, Yang B, Liu Z, Liu Q, Zhang X. Colorimetric and ultrasensitive detection of H2O2 based on Au/Co3O4-CeOx nanocomposites with enhanced peroxidase-like performance. Sensors Actuators B Chem. 2018;271:336–45.

    Article  CAS  Google Scholar 

  4. Huang YQ, Fu S, Wang YS, Xue JH, Xiao XL, Chen SH, et al. Protamine-gold nanoclusters as peroxidase mimics and the selective enhancement of their activity by mercury ions for highly sensitive colorimetric assay of Hg (II). Anal Bioanal Chem. 2018;410(28):7385–94.

    Article  CAS  PubMed  Google Scholar 

  5. Chen Y, Cao H, Shi W, Liu H, Huang Y. Fe–Co bimetallic alloy nanoparticles as a highly active peroxidase mimetic and its application in biosensing. Chem Commun. 2013;49(44):5013–5.

    Article  CAS  Google Scholar 

  6. Liu Q, Zhu R, Du H, Li H, Yang Y, Jia Q, et al. Higher catalytic activity of porphyrin functionalized Co3O4 nanostructures for visual and colorimetric detection of H2O2 and glucose. Mater Sci Eng C. 2014;43:321–9.

    Article  CAS  Google Scholar 

  7. He S-B, Deng H-H, Liu A-L, Li G-W, Lin X-H, Chen W, et al. Synthesis and peroxidase-like activity of salt-resistant platinum nanoparticles by using bovine serum albumin as the scaffold. ChemCatChem. 2014;6(6):1543–8.

    Article  CAS  Google Scholar 

  8. Jv Y, Li B, Cao R. Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun. 2010;46(42):8017–9.

    Article  CAS  Google Scholar 

  9. Liu J, Hu X, Hou S, Wen T, Liu W, Zhu X, et al. Au@Pt core/shell nanorods with peroxidase- and ascorbate oxidase-like activities for improved detection of glucose. Sensors Actuators B Chem. 2012;166–167:708–14.

    Article  CAS  Google Scholar 

  10. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–83.

    Article  CAS  PubMed  Google Scholar 

  11. Cheng H, Lin S, Muhammad F, Lin Y-W, Wei H. Rationally modulate the oxidase-like activity of nanoceria for self-regulated bioassays. ACS Sensors. 2016;1(11):1336–43.

    Article  CAS  Google Scholar 

  12. Chen W, Chen J, Feng YB, Hong L, Chen QY, Wu LF, et al. Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose. Analyst. 2012;137(7):1706–12.

    Article  CAS  PubMed  Google Scholar 

  13. Mu J, Wang Y, Zhao M, Zhang L. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun. 2012;48(19):2540–2.

    Article  CAS  Google Scholar 

  14. Su L, Dong W, Wu C, Gong Y, Zhang Y, Li L, et al. The peroxidase and oxidase-like activity of NiCo2O4 mesoporous spheres: mechanistic understanding and colorimetric biosensing. Anal Chim Acta. 2017;951:124–32.

    Article  CAS  PubMed  Google Scholar 

  15. Guan J, Peng J, Jin X. Synthesis of copper sulfide nanorods as peroxidase mimics for the colorimetric detection of hydrogen peroxide. Anal Methods. 2015;7(13):5454–61.

    Article  CAS  Google Scholar 

  16. Maji SK, Dutta AK, Dutta S, Srivastava DN, Paul P, Mondal A, et al. Single-source precursor approach for the preparation of CdS nanoparticles and their photocatalytic and intrinsic peroxidase like activity. Appl Catal B Environ. 2012;126:265–74.

    Article  CAS  Google Scholar 

  17. Guo X, Wang Y, Wu F, Ni Y, Kokot S. A colorimetric method of analysis for trace amounts of hydrogen peroxide with the use of the nano-properties of molybdenum disulfide. Analyst. 2015;140(4):1119–26.

    Article  CAS  PubMed  Google Scholar 

  18. Liu Q, Chen P, Xu Z, Chen M, Ding Y, Yue K, et al. A facile strategy to prepare porphyrin functionalized ZnS nanoparticles and their peroxidase-like catalytic activity for colorimetric sensor of hydrogen peroxide and glucose. Sensors Actuators B Chem. 2017;251:339–48.

    Article  CAS  Google Scholar 

  19. Liu YL, Zhao XJ, Yang XX, Li YF. A nanosized metal–organic framework of Fe-MIL-88NH2 as a novel peroxidase mimic used for colorimetric detection of glucose. Analyst. 2013;138(16):4526–31.

    Article  CAS  PubMed  Google Scholar 

  20. Chen D, Li B, Jiang L, Duan D, Li Y, Wang J, et al. Highly efficient colorimetric detection of cancer cells utilizing Fe-MIL-101 with intrinsic peroxidase-like catalytic activity over a broad pH range. RSC Adv. 2015;5(119):97910–7.

    Article  CAS  Google Scholar 

  21. Song Y, Cho D, Venkateswarlu S, Yoon M. Systematic study on preparation of copper nanoparticle embedded porous carbon by carbonization of metal-organic framework for enzymatic glucose sensor. RSC Adv. 2017;7(17):10592–600.

    Article  CAS  Google Scholar 

  22. Song Y, Qu K, Zhao C, Ren J, Qu X. Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater. 2010;22(19):2206–10.

    Article  CAS  PubMed  Google Scholar 

  23. Sun H, Zhao A, Gao N, Li K, Ren J, Qu X. Deciphering a nanocarbon-based artificial peroxidase: chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew Chem Int Ed. 2015;54(24):7176–80.

    Article  CAS  Google Scholar 

  24. Song Y, Wang X, Zhao C, Qu K, Ren J, Qu X. Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem Eur J. 2010;16(12):3617–21.

    Article  CAS  PubMed  Google Scholar 

  25. Lawal AT. Graphene-based nano composites and their applications. A review. Biosens Bioelectron. 2019;141:111384.

    Article  CAS  PubMed  Google Scholar 

  26. He W, Liu Y, Yuan J, Yin J-J, Wu X, Hu X, et al. Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials. 2011;32(4):1139–47.

    Article  CAS  PubMed  Google Scholar 

  27. Maji SK, Yu S, Chung K, Sekkarapatti Ramasamy M, Lim JW, Wang J, et al. Synergistic Nanozymetic activity of hybrid gold bipyramid–molybdenum disulfide Core@Shell nanostructures for two-photon imaging and anticancer therapy. ACS Appl Mater Interfaces. 2018;10(49):42068–76.

    Article  CAS  PubMed  Google Scholar 

  28. Seifati SM, Nasirizadeh N, Azimzadeh M. Nano-biosensor based on reduced graphene oxide and gold nanoparticles, for detection of phenylketonuria-associated DNA mutation. IET Nanobiotechnol. 2018;12(4):417–22.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xu L, Wang J. Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environ Sci Technol. 2012;46(18):10145–53.

    Article  CAS  PubMed  Google Scholar 

  30. Shi W, Wang Q, Long Y, Cheng Z, Chen S, Zheng H, et al. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun (Camb). 2011;47(23):6695–7.

    Article  CAS  Google Scholar 

  31. Li R, Zhen M, Guan M, Chen D, Zhang G, Ge J, et al. A novel glucose colorimetric sensor based on intrinsic peroxidase-like activity of C60-carboxyfullerenes. Biosens Bioelectron. 2013;47:502–7.

    Article  CAS  PubMed  Google Scholar 

  32. Liu S, Wang L, Zhai J, Luo Y, Sun X. Carboxyl functionalized mesoporous polymer: a novel peroxidase-like catalyst for H2O2 detection. Anal Methods. 2011;3(7):1475–7.

    Article  CAS  Google Scholar 

  33. Zhao R, Zhao X, Gao X. Molecular-level insights into intrinsic peroxidase-like activity of nanocarbon oxides. Chem Eur J. 2015;21(3):960–4.

    Article  CAS  PubMed  Google Scholar 

  34. Lin L, Song X, Chen Y, Rong M, Zhao T, Wang Y, et al. Intrinsic peroxidase-like catalytic activity of nitrogen-doped graphene quantum dots and their application in the colorimetric detection of H2O2 and glucose. Anal Chim Acta. 2015;869:89–95.

    Article  CAS  PubMed  Google Scholar 

  35. Lin S, Zhang Y, Cao W, Wang X, Qin L, Zhou M, et al. Nucleobase-mediated synthesis of nitrogen-doped carbon nanozymes as efficient peroxidase mimics. Dalton Trans. 2019;48(6):1993–9.

    Article  CAS  PubMed  Google Scholar 

  36. Wang X, Qin L, Lin M, Xing H, Wei H. Fluorescent graphitic carbon nitride-based nanozymes with peroxidase-like activities for ratiometric biosensing. Anal Chem. 2019;91(16):10648–56.

    Article  CAS  PubMed  Google Scholar 

  37. Kim MS, Cho S, Joo SH, Lee J, Kwak SK, Kim MI, et al. N- and B-codoped graphene: a strong candidate to replace natural peroxidase in sensitive and selective bioassays. ACS Nano. 2019;13(4):4312–21.

    Article  CAS  PubMed  Google Scholar 

  38. Balaji SS, Anandha Raj J, Karnan M, Sathish M. Supercritical fluid assisted synthesis of S-doped graphene and its symmetric supercapacitor performance evaluation using different electrolytes. Synth Met. 2019;255.

  39. Zuo Y, Xu J, Zhu X, Duan X, Lu L, Yu Y. Graphene-derived nanomaterials as recognition elements for electrochemical determination of heavy metal ions: a review. Microchim Acta. 2019;186(3):171.

    Article  CAS  Google Scholar 

  40. Ma Z, Dou S, Shen A, Tao L, Dai L, Wang S. Sulfur-doped graphene derived from cycled lithium–sulfur batteries as a metal-free electrocatalyst for the oxygen reduction reaction. Angew Chem Int Ed. 2015;54(6):1888–92.

    Article  CAS  Google Scholar 

  41. Duraivel M, Nagappan S, Balamuralitharan B, Selvam S, Karthick SN, Prabakar K, et al. Superior one-pot synthesis of a doped graphene oxide electrode for a high power density supercapacitor. New J Chem. 2018;42(13):11093–101.

    Article  CAS  Google Scholar 

  42. Tian Z, Li J, Zhu G, Lu J, Wang Y, Shi Z, et al. Facile synthesis of highly conductive sulfur-doped reduced graphene oxide sheets. Phys Chem Chem Phys. 2016;18(2):1125–30.

    Article  CAS  PubMed  Google Scholar 

  43. Sun W, Ju X, Zhang Y, Sun X, Li G, Sun Z. Application of carboxyl functionalized graphene oxide as mimetic peroxidase for sensitive voltammetric detection of H2O2 with 3,3′,5,5′-tetramethylbenzidine. Electrochem Commun. 2013;26:113–6.

    Article  CAS  Google Scholar 

  44. Jin GH, Ko E, Kim MK, Tran V-K, Son SE, Geng Y, et al. Graphene oxide-gold nanozyme for highly sensitive electrochemical detection of hydrogen peroxide. Sensors Actuators B Chem. 2018;274:201–9.

    Article  CAS  Google Scholar 

  45. Li J, Zhang Y, Zhang X, Huang J, Han J, Zhang Z, et al. S, N dual-doped graphene-like carbon nanosheets as efficient oxygen reduction reaction electrocatalysts. ACS Appl Mater Interfaces. 2017;9(1):398–405.

    Article  CAS  PubMed  Google Scholar 

  46. Li YZ, Li TT, Chen W, Song YY. Co4N nanowires: noble-metal-free peroxidase mimetic with excellent salt- and temperature-resistant abilities. ACS Appl Mater Interfaces. 2017;9(35):29881–8.

    Article  CAS  PubMed  Google Scholar 

  47. Chen Z, Yin J-J, Zhou Y-T, Zhang Y, Song L, Song M, et al. Dual enzyme-like activities of Iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano. 2012;6(5):4001–12.

    Article  CAS  PubMed  Google Scholar 

  48. Shi W, Zhang X, He S, Huang Y. CoFe2O4 magnetic nanoparticles as a peroxidase mimic mediated chemiluminescence for hydrogen peroxide and glucose. Chem Commun (Camb). 2011;47(38):10785–7.

    Article  CAS  Google Scholar 

  49. Xie J, Cao H, Jiang H, Chen Y, Shi W, Zheng H, et al. Co3O4-reduced graphene oxide nanocomposite as an effective peroxidase mimetic and its application in visual biosensing of glucose. Anal Chim Acta. 2013;796:92–100.

    Article  CAS  PubMed  Google Scholar 

  50. DeSesso JM, Lavin AL, Hsia SM, Mavis RD. Assessment of the carcinogenicity associated with oral exposures to hydrogen peroxide. Food Chem Toxicol. 2000;38(11):1021–41.

    Article  CAS  PubMed  Google Scholar 

  51. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.

    Article  CAS  PubMed  Google Scholar 

  52. Lou Z, Zhao S, Wang Q, Wei H. N-doped carbon as peroxidase-like nanozymes for total antioxidant capacity assay. Anal Chem. 2019;91(23):15267–74.

    Article  CAS  PubMed  Google Scholar 

  53. Zhu S, Zhao X-E, You J, Xu G, Wang H. Carboxylic-group-functionalized single-walled carbon nanohorns as peroxidase mimetics and their application to glucose detection. Analyst. 2015;140(18):6398–403.

    Article  CAS  PubMed  Google Scholar 

  54. Dong Y, Zhang J, Jiang P, Wang G, Wu X, Zhao H, et al. Superior peroxidase mimetic activity of carbon dots–Pt nanocomposites relies on synergistic effects. New J Chem. 2015;39(5):4141–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liande Zhu.

Ethics declarations

This study was approved by the Ethics Committee of Northeast Normal University and implemented according to their ethical standards. The informed consent of all donors was obtained before testing the serum samples acquired from a local hospital (The Hospital Affiliated to Northeast Normal University).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 202 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Feng, Y., Li, Y. et al. S-doped reduced graphene oxide: a novel peroxidase mimetic and its application in sensitive detection of hydrogen peroxide and glucose. Anal Bioanal Chem 412, 5477–5487 (2020). https://doi.org/10.1007/s00216-020-02767-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02767-6

Keywords

Navigation