• Rapid Communication

Aeroacoustic noise generation due to vortex reconnection

Hamid Daryan, Fazle Hussain, and Jean-Pierre Hickey
Phys. Rev. Fluids 5, 062702(R) – Published 24 June 2020
PDFHTMLExport Citation

Abstract

We address our long-standing claim that vortex reconnection is one of the dominant sources of aeroacoustic noise in a number of canonical turbulent flows. The reconnection of two antiparallel vortices is studied via direct numerical simulation of the compressible Navier-Stokes equations in order to fully resolve the acoustic noise generation and far-field sound wave propagation. We show that the primary acoustic source is initially located at the contact point and then at the bridges, where reconnected vortex lines accumulate. At the start of reconnection, the sharp near-field pressure rise results in a high level of far-field noise with a clear dipole pattern. As more vortex lines reconnect and recoil from each other by self-induction, the near-field low-pressure zone extends in both the axial and lateral directions, which results in a quadrupole far-field noise. We thus reveal and quantify sound pressure levels and directivity during vortex reconnection. This work paves the way for further investigations of the reconnection generated noise, especially at higher Reynolds numbers.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 11 March 2020
  • Accepted 22 May 2020

DOI:https://doi.org/10.1103/PhysRevFluids.5.062702

©2020 American Physical Society

Physics Subject Headings (PhySH)

Fluid Dynamics

Authors & Affiliations

Hamid Daryan1, Fazle Hussain2, and Jean-Pierre Hickey1,*

  • 1Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
  • 2Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA

  • *Corresponding author: j6hickey@uwaterloo.ca

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 5, Iss. 6 — June 2020

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Fluids

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×