Skip to main content
Log in

Microstructure evolution and mechanical properties of the ZM61 alloy sheets under different pre-rolling and high strain rate rolling temperatures

  • Novel Synthesis and Processing of Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The microstructure evolution, dynamic recrystallization (DRX) and precipitation of the ZM61 alloy sheets prepared with different rolling conditions were studied. The DRX grain sizes (dDRX) at four high strain rate rolling (HSRR) temperatures (275–350 °C) are 1.9, 2.3, 2.6 and 3.1 μm, respectively, while the DRX volume fractions (fVDRX) are 69, 73, 76 and 82%, respectively. 300 °C is selected as the optimal HSRR temperature. The dDRX and fVDRX of the alloys prepared by pre-rolling (PR) at 300 °C + HSRR are 1.0 μm and 91%, respectively. The PR treatment does not change the types of the precipitates but promotes the precipitation. The tensile strength (UTS) of 369 MPa and yield strength (YS) of 261 MPa can be achieved by HSRR at 300 °C, while a further increase in both UTS and YS can be obtained by PR treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. A.-A. Luo: Magnesium casting technology for structural applications. J. Magnesium Alloys 1, 2–22 (2013).

    Article  CAS  Google Scholar 

  2. A.-A. Luo: Materials comparison and potential applications of magnesium in automobiles. In Essential Readings in Magnesium Technology, H.-I. Kaplan, J.-N. Hryn and B.-B. Clow eds. (Springer International Publishing, Berlin, 2016); pp. 25–34.

    Chapter  Google Scholar 

  3. T. Mukai, M. Yamanoi, H. Watanabe, and K. Higashi: Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scr. Mater. 45 (1), 89–94 (2001).

    Article  CAS  Google Scholar 

  4. J.-F. Nie: Precipitation and hardening in magnesium alloys. Metall. Mater. Trans. A 43 (11), 3891–3939 (2012).

    Article  CAS  Google Scholar 

  5. W.-M. Mao and X.-B. Zhao: The recrystallization and grain growth of the metals (Metallurgical Industry Press, Beijing, 1994), pp. 201–209.

    Google Scholar 

  6. J. Peng, X.-S. Tong, B.-J. Lv, Y. Pen, and F.-S. Pan: Hot compression deformation behaviour and dynamic recrystallization of Mg-6Zn-1Mn magnesium alloy. Trans. Mater. Heat. Treat. 34 (5), 180–185 (2013).

    CAS  Google Scholar 

  7. C. Chen, J.-H. Chen, H.-G. Yan, B. Su, M. Song, and S.-Q. Zhu: Dynamic precipitation, microstructure and mechanical properties of Mg-5Zn-1Mn alloy sheets prepared by high strain-rate rolling. Mater. Des. 100, 58–66 (2016).

    Article  CAS  Google Scholar 

  8. S.-Q. Zhu, H.-G. Yan, J.-H. Chen, Y.-Z. Wu, J.-Z. Liu, and J. Tian: Effect of twinning and dynamic recrystallization on the high strain rate rolling process. Scr. Mater. 63 (10), 985–988 (2010).

    Article  CAS  Google Scholar 

  9. B. Song, N. Guo, T.-T. Liu, and Q.-S. Yang: Improvement of formability and mechanical properties of magnesium alloys via pre-twinning: A review. Mater. Des. 62, 352–360 (2014).

    Article  CAS  Google Scholar 

  10. J.-M. Jiang, J. Wu, S. Ni, H.-G. Yan, and M. Song: Improving the mechanical properties of a ZM61 magnesium alloy by pre-rolling and high strain rate rolling. Mater. Sci. Eng., A 712, 478–484 (2018).

    Article  CAS  Google Scholar 

  11. J. Wu, J.-H. Chen, H.-G. Yan, W.-J. Xia, B. Su, L. Yu, G.-S. Liu, and M. Song: Enhancing the mechanical properties of high strain rate rolled Mg-6Zn-1Mn alloy by pre-rolling. J. Mater. Sci. 52 (17), 10557–10566 (2017).

    Article  CAS  Google Scholar 

  12. B. Song, R.-L. Xin, G. Chen, X.-Y. Zhang, and Q. Liu: Improving tensile and compressive properties of magnesium alloy plates by pre-cold rolling. Scr. Mater. 66 (12), 1061–1064 (2012).

    Article  CAS  Google Scholar 

  13. S.-G. Hong, S.-H. Park, and S.-L. Chong: Role of {10–12} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy. Acta Mater. 58 (18), 5873–5885 (2010).

    Article  CAS  Google Scholar 

  14. S.-H. Park, H.-S. Kim, J.-H. Bae, C.-D. Yim, and B.-S. You: Improving the mechanical properties of extruded Mg-3Al-1Zn alloy by cold pre-forging. Scr. Mater. 69 (3), 250–253 (2013).

    Article  CAS  Google Scholar 

  15. J.-B. Clark, L. Zabdyr, Z. Moser, and A.-H. Nayeb: Phase Diagrams of Binary Magnesium Alloys (ASM International, Metals Park, OH, 1988), p. 353.

    Google Scholar 

  16. J.-B. Clark: Transmission electron microscopy study of age hardening in a Mg-5 wt.% Zn alloy. Acta Metallurgy 13 (12), 1281–1289 (1965).

    Article  CAS  Google Scholar 

  17. L. Jin, J. Dong, R. Wang, and L.M. Peng: Effects of hot rolling processing on microstructures and mechanical properties of Mg-3%Al-1%Zn alloy sheet. Mater. Sci. Eng., A 527 (7–8), 1970–1974 (2010).

    Article  Google Scholar 

  18. M. Hradilová, F. Montheillet, A. Fraczkiewicz, C. Desrayaud, and P. Lejček: Effect of Ca-addition on dynamic recrystallization of Mg-Zn alloy during hot deformation. Mater. Sci. Eng., A 580, 217–226 (2013).

    Article  Google Scholar 

  19. F.-J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier, Oxford, 2004), pp. 208–305.

    Google Scholar 

  20. J.-D. Robson, N. Stanford, and M.-R. Barnett: Effect of particles in promoting twin nucleation in a Mg-5Zn alloy. Scr. Mater. 63 (8), 823–826 (2010).

    Article  CAS  Google Scholar 

  21. J.-W. Christian and T.-C. Wang: Deformation twinning and its effect on crack extension. Acta Mater. 46 (15), 5313–5321 (1998).

    Article  Google Scholar 

  22. S.-Q. Zhu, H.-G. Yan, J.-H. Chen, Y.-Z. Wu, B. Su, Y.-G. Du, and X.-Z. Liao: Feasibility of high strain-rate rolling of a magnesium alloy across a wide temperature range. Scr. Mater. 67 (4), 404–407 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the support of the National Natural Science Foundation of China (51471066, 51571089) and Natural Science Foundation of Hunan Province, China (2019JJ40044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qin Wu or Jihua Chen.

Additional information

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

Declaration of competing interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Wu, Q., Chen, J. et al. Microstructure evolution and mechanical properties of the ZM61 alloy sheets under different pre-rolling and high strain rate rolling temperatures. Journal of Materials Research 35, 1817–1824 (2020). https://doi.org/10.1557/jmr.2020.158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.158

Navigation