Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access June 24, 2020

Planck Neutrinos as Ultra High Energy Cosmic Rays

  • Dmitri L. Khokhlov EMAIL logo
From the journal Open Astronomy

Abstract

The studied conjecture is that ultra high energy cosmic rays (UHECRs) are hypothetical Planck neutrinos arising in the decay of the protons falling onto the gravastar. The proton is assumed to decay at the Planck scale into positron and four Planck neutrinos. The supermassive black holes inside active galactic nuclei, while interpreted as gravastars, are considered as UHECR sources. The scattering of the Planck neutrinos by the proton at the Planck scale is considered. The Planck neutrinos contribution to the CR events may explain the CR spectrum from 5 × 1018 eV to 1020 eV. The muon number in the Planck neutrinos-initiated shower is estimated to be larger by a factor of 3/2 in comparison with the standard model that is consistent with the observational data.

Keywords: cosmic rays

References

Aab A, Abreu P, Aglietta M, Ahn EJ, Al Samarai I, Albuquerque IFM, et al. 2014. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above 1017.8eV. Phys Rev D Part Fields Gravit Cosmol. 90(12):122005.10.1103/PhysRevD.90.122005Search in Google Scholar

Aab A, Abreu P, Aglietta M, Ahn EJ, Al Samarai I, Albuquerque IFM, et al. 2015a. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events. Phys Rev D Part Fields Gravit Cosmol. 91(3):032003.10.1103/PhysRevD.91.059901Search in Google Scholar

Aab A, Abreu P, Aglietta M, Ahn EJ, Al Samarai I, Albuquerque IFM, et al. 2015b. Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger Observatory. Phys Rev D Part Fields Gravit Cosmol. 91(9):092008.Search in Google Scholar

Abbasi RU, Abe M, Abu-Zayyad T, Allen M, Anderson R, Azuma R, et al. 2015. Study of Ultra-High Energy Cosmic Ray composition using Telescope Array’s Middle Drum detector and surface array in hybrid mode. Astropart Phys. 64:49–62.10.1016/j.astropartphys.2014.11.004Search in Google Scholar

Abraham J, Abreu P, Aglietta M, Aguirre C, Allard D, Allekotte I, et al. 2007. Correlation of the highest-energy cosmic rays with nearby extragalactic objects. Science. 318(5852):938–943.Search in Google Scholar

Abraham J, Abreu P, Aglietta M, Aguirre C, Allard D, Allekotte I, et al. 2008. Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei. Astropart Phys. 29(3):188–204.10.1016/j.astropartphys.2008.01.002Search in Google Scholar

Abreu P, Aglietta M, Ahn EJ, Allard D, Allekotte I, Allen J, et al. 2010. Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter. Astropart Phys. 34(5):314–326.10.1016/j.astropartphys.2010.08.010Search in Google Scholar

Ackermann M, Ajello M, Albert A, Atwood WB, Baldini L, Ballet J, et al. 2016. Resolving the extragalactic γ-ray background above 50 GeV with the Fermi Large Area Telescope. Phys Rev Lett. 116(15):151105.Search in Google Scholar

Aloisio R, Berezinsky V, Blasi P, Gazizov A, Grigorieva S, Hnatyk B. 2007. A dip in the UHECR spectrum and the transition from galactic to extragalactic cosmic rays. Astropart Phys. 27(1):76–91.10.1016/j.astropartphys.2006.09.004Search in Google Scholar

Aloisio R, Berezinsky V, Blasi P. 2014. Ultra high energy cosmic rays: Implications of Auger data for source spectra and chemical composition. J. Cosmol. Astropart. Phys.,2014(10):020.Search in Google Scholar

Apel WD, Arteaga-Velázquez JC, Bekk K, Bertaina M, Blümer J, Bozdog H, et al. 2013. KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays. Astropart Phys. 47:54–66.10.1016/j.astropartphys.2013.06.004Search in Google Scholar

Barbieri J, Chapline G. 2012. Signature for the absence of an event horizon. Phys Lett B. 709(3):114–117.Search in Google Scholar

Berezinsky V, Gazizov A, Kalashev O. 2016. Cascade photons as test of protons in UHECR. Astropart Phys. 84:52–61.10.1016/j.astropartphys.2016.08.007Search in Google Scholar

Blasi P. 2013. Theoretical challenges in acceleration and transport of ultra high energy cosmic rays: A review. EPJ Web of Conferences. 53:01002.10.1051/epjconf/20135301002Search in Google Scholar

Bustamante M, Baerwald P, Murase K, Winter W. 2015. Neutrino and cosmic-ray emission from multiple internal shocks in gamma-ray bursts. Nat Commun. 6(1):6783.10.1038/ncomms7783Search in Google Scholar PubMed

Chapline G. 2003. Quantum phase transitions and the failure of classical general relativity. Int J Mod Phys A. 18(21):3587–3590.10.1142/S0217751X03016380Search in Google Scholar

Corda C, Mosquera Cuesta HJ. 2011. Irreversible gravitational collapse: black stars or black holes? Hadronic J. 34:149–159.Search in Google Scholar

Fang K, Kotera K. 2016. The highest-energy cosmic rays cannot be dominantly protons from steady sources. ApJ. 832(1):L17.10.3847/2041-8205/832/1/L17Search in Google Scholar

Fang K, Murase K. 2018. Linking high-energy cosmic particles by black-hole jets embedded in large-scale structures. Nat Phys. 14(4):396–398.10.1038/s41567-017-0025-4Search in Google Scholar

Farrar GR, Gruzinov A. 2009. Giant AGN flares and cosmic ray bursts. ApJ. 693(1):329–332.Search in Google Scholar

Gaisser TK, Stanev T, Tilav S. 2013. Cosmic ray energy spectrum from measurements of air showers. Front Phys. 8(6):748–758.10.1007/s11467-013-0319-7Search in Google Scholar

Gavish E, Eichler D. 2016. On ultra-high-energy cosmic rays and their resultant gamma-rays. ApJ. 822(1):56.Search in Google Scholar

Georgi H, Glashow S. 1974. Unity of All Elementary-Particle Forces. Phys Rev Lett. 32(8):438–441.10.1103/PhysRevLett.32.438Search in Google Scholar

Greisen K. 1966. End to the Cosmic-Ray Spectrum? Phys Rev Lett. 16(17):748–750.10.1103/PhysRevLett.16.748Search in Google Scholar

Heinze J, Boncioli D, Bustamante M, Winter W. 2016. Cosmogenic neutrinos challenge the cosmic-ray proton dip model. ApJ. 825(2):122.Search in Google Scholar

Ivanov, D. 2015. TA spectrum summary. Proceedings of the 34th International Cosmic Ray Conference, 2015 Jul 30- Aug 6, The Hague, The Netherlands. PoS. ICRC2015:349.Search in Google Scholar

Ishihara A. 2015. A search for extremely high energy neutrinos in 6 years of IceCube data. Proceedings of the 34th International Cosmic Ray Conference, 2015 Jul 30- Aug 6, The Hague, The Netherlands. PoS. ICRC2015:1064.Search in Google Scholar

Khokhlov, D. L. 2011. Gravitational wave in the theory with the universal charge. Open Astron. J., 4(SI 1):151–153. Available from: https://benthamopen.com/ABSTRACT/TOAAJ-4-151. DOI: 10.2174/1874381101004010151.10.2174/1874381101004010151Search in Google Scholar

Khokhlov DL. 2014. Constraints on the decay of the protons falling onto Sgr A*. Phys Lett B. 729:1–2.10.1016/j.physletb.2013.12.055Search in Google Scholar

Khokhlov DL. 2015. Dark matter radiation from Sgr A*. Ap&SS. 360(1):27.Search in Google Scholar

Khokhlov DL. 2017. Energy of the particle falling onto the surface of the Gravastar. Int J Mod Phys A. 4:8–11.Search in Google Scholar

Khokhlov DL. 2018. Model of the galaxy with hot dark matter. Open Astron. 27(1):294–302. Available from: https://www.degruyter.com/view/journals/astro/27/1/article-p294.xml. DOI: https://doi.org/10.1515/astro-2018-0034.10.1515/astro-2018-0034Search in Google Scholar

Kotera K, Olinto AV. 2011. The astrophysics of ultrahigh-energy cosmic rays. Annu Rev Astron Astrophys. 49(1):119–153.10.1146/annurev-astro-081710-102620Search in Google Scholar

Lemoine M, Waxman E. 2009. Anisotropy vs chemical composition at ultra-high energies. J. Cosmol. Astropart. Phys. 11:009.10.1088/1475-7516/2009/11/009Search in Google Scholar

Letessier-Selvon A, Stanev T. 2011. Ultrahigh energy cosmic rays. Rev Mod Phys. 83(3):907–942.10.1103/RevModPhys.83.907Search in Google Scholar

Liu R-Y, Taylor AM, Wang X-Y, Aharonian FA. 2016. Indication of a local fog of subankle ultrahigh energy cosmic rays. Phys Rev D. 94(4):043008.10.1103/PhysRevD.94.043008Search in Google Scholar

Matthews J. 2005. A Heitler model of extensive air showers. Astropart Phys. 22(5-6):387–397.10.1016/j.astropartphys.2004.09.003Search in Google Scholar

Mazur PO, Mottola E. 2004. Gravitational vacuum condensate stars. Proc Natl Acad Sci USA. 101(26):9545–9550.Search in Google Scholar

Meli A, Becker JK, Quenby JJ. 2008. On the origin of ultra high Energy cosmic rays: Subluminal and superluminal relativistic shocks A&A, 492, 323–336.10.1051/0004-6361:20078681Search in Google Scholar

Murase K, Dermer CD, Takami H, Migliori G. 2012. Blazars as ultrahigh-energy cosmic-ray sources: implications for TeV gamma-ray observations. ApJ. 749(1):63.Search in Google Scholar

Plotnikov I, Pelletier G, Lemoine M. 2013. Particle transport and heating in the microturbulent precursor of relativistic shocks. MNRAS. 430(2):1280–1293.Search in Google Scholar

Prantzos N, Boehm C, Bykov AM, Diehl R, Ferrière K, Guessoum N, et al. 2011. The 511 keV emission from positron annihilation in the Galaxy. Rev Mod Phys. 83(3):1001–1056.10.1103/RevModPhys.83.1001Search in Google Scholar

Reville B, Bell AR. 2014. On the maximum energy of shock accelerated cosmic rays at ultra-relativistic shocks. MNRAS. 439(2):2050–2059.Search in Google Scholar

Sironi L, Spitkovsky A, Arons J. 2013. The maximum energy of accelerated particles in relativistic collisionless shocks. ApJ. 771(1):54.Search in Google Scholar

Taylor AM. 2014. UHECR composition models. Astropart Phys. 54:48–53.10.1016/j.astropartphys.2013.11.006Search in Google Scholar

Thoudam S, Rachen JP, van Vliet A, Achterberg A, Buitink S, Falcke H, et al. 2016. Cosmic-ray energy spectrum and composition up to the ankle: The case for a second Galactic component. A&A. 595:A33.10.1051/0004-6361/201628894Search in Google Scholar

Valiño I. 2015. The flux of ultra-high energy cosmic rays after ten years of operation of the Pierre Auger Observatory. Proceedings of the 34th International Cosmic Ray Conference, 2015 Jul 30- Aug 6, The Hague, The Netherlands. PoS. ICRC2015:271.Search in Google Scholar

Waxman E, Loeb A. 2009. Constraints on the local sources of ultra-high-energy cosmic rays. J. Cosmol. Astropart. Phys. 2009(08):026.Search in Google Scholar

Wittkowski, D. for the Pierre Auger Collaboration. Reconstructed properties of the sources of UHECR and their dependence on the extragalactic magnetic field. Proceedings of the 35th International Cosmic Ray Conference, 2017 Jul 10 - Jul 20, Bexco, Busan, Korea. PoS. ICRC2017: 563.10.22323/1.301.0563Search in Google Scholar

Yoshida S. 2016. What have we learned about the sources of ultrahigh-energy cosmic rays via neutrino astronomy? Available from: arXiv:1612.04934.10.1016/j.nuclphysbps.2017.06.031Search in Google Scholar

Zatsepin G, Kuzmin V. 1966. Upper limit of the spectrum of cosmic rays. JETP Lett. 4:78.Search in Google Scholar

Received: 2019-05-21
Accepted: 2020-04-14
Published Online: 2020-06-24

© 2020 Dmitri L. Khokhlov, published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/astro-2020-0005/html
Scroll to top button