Skip to main content

Advertisement

Log in

Metalloenzyme mimic: diironhexacarbonyl cluster coupled to redox-active 4-mercapto-1,8-naphthalic anhydride ligands

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The non-innocent redox-active ligand, 4-mercapto-1,8-naphthalic anhydride (HS-NAH), has been used in the design and synthesis of a diironhexacarbonyl complex, [μ-(S-NAH)2Fe2(CO)6]. [μ-(S-NAH)2Fe2(CO)6] has been characterized by spectroscopic methods and cyclic voltammetry. Infrared spectrum of [μ-(S-NAH)2Fe2(CO)6] displays peaks corresponding to terminal metal CO groups (2081, 2044, 2006 cm−1) and peaks assigned to C=O of the naphthalic anhydrides (1780, 1740 cm−1). Electrochemical measurements of [μ-(S-NAH)2Fe2(CO)6] feature redox events that are metal-based (irreversible, Epc: − 1.13 V, − 1.60 V vs Fc/Fc+) and naphthalic anhydride centered (partially chemically reversible, Epc: − 1.99 V; Epa: − 1.90 V vs Fc/Fc+). Cyclic voltammetric analysis of [μ-(S-NAH)2Fe2(CO)6] in the presence of acetic acid show that the complex mimics the active site of [Fe–Fe]-hydrogenase by catalyzing the electrochemical reduction of protons to hydrogen with an overpotential of − 0.67 V. The bi-functional model, [μ-(S-NAH)2Fe2(CO)6], exhibits electronic coupling with synergistic metal–ligand interactions leading to transformation of protons to molecular hydrogen.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Momirlan M, Veziroglu TN (2005) Int J Hydrogen Energy 30:795–802

    Article  CAS  Google Scholar 

  2. Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG (2010) Chem Rev 110:6474–6502

    Article  CAS  PubMed  Google Scholar 

  3. Dunn S (2002) Int J Hydrogen Energy 27:235–264

    Article  CAS  Google Scholar 

  4. Jacobsen GM, Yang JY, Twamley B, Wilson AD, Bullock RM, DuBois MR, DuBois DL (2008) Energy Environ Sci 1:167–174

    Article  CAS  Google Scholar 

  5. Wuebbles DJ, Jain AK (2001) Fuel Process Technol 71:99–119

    Article  CAS  Google Scholar 

  6. Ogden JM, Steinbugler MM, Kreutz TG (1999) J Power Sour 79:43–168

    Article  Google Scholar 

  7. Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Structure 7:13–23

    Article  CAS  PubMed  Google Scholar 

  8. Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) Science 282:1853–1858

    Article  CAS  PubMed  Google Scholar 

  9. Silakov A, Wenk B, Reijerse E, Lubitz W (2009) Phys Chem Chem Phys 11:6592–6599

    Article  CAS  PubMed  Google Scholar 

  10. Nicolet Y, de Lacey AL, Vernede X, Fernandez VM, Hatchikian EC, Fontecilla-Camps JC (2001) J Am Chem Soc 123:1596–1601

    Article  CAS  PubMed  Google Scholar 

  11. Nicolet Y, Cavazza C, Fontecilla-Camps JC (2002) J Inorg Biochem 91:1–8

    Article  CAS  PubMed  Google Scholar 

  12. Schwab DE, Tard C, Brecht E, Peters JW, Pickett CJ, Szilagyi RK (2006) Chem Commun 3696–3698

  13. Gao S, Liu Y, Shao Y, Jiang D, Duan Q (2020) Coord Chem Rev 402:213081

    Article  CAS  Google Scholar 

  14. Pandey IK, Natarajan M, Kaur-Chumaan S (2015) J Inorg Biochem 143:88–110

    Article  CAS  PubMed  Google Scholar 

  15. Felton GN, Mebi CA, Petro BJ, Vannucci AK, Evans DH, Glass RS, Lichtenberger DL (2009) J Organomet Chem 694:2681–2699

    Article  CAS  Google Scholar 

  16. Capon J-F, Gloaguen F, Schollhammer P, Talarmin J (2005) Coord Chem Rev 249:1664–1676

    Article  CAS  Google Scholar 

  17. Liu Y-C, Yen T-H, Chu K-T, Chiang M-H (2016) Comment Inorg Chem 36:141–181

    Article  CAS  Google Scholar 

  18. van der Vlugt JI (2019) Chem Eur J 25:2651–2662

    Article  Google Scholar 

  19. Kaim W (2012) Eur. J. Inorg. Chem. 343–348

  20. Basu P, Colston KJ, Benjamin Mogesa B (2020) Coord Chem Rev 409:213211

    Article  CAS  Google Scholar 

  21. Na Y, Wei P, Zhou L (2016) Chem Eur J 22:10365–10368

    Article  CAS  PubMed  Google Scholar 

  22. Li P, Amirjalayer S, Hartl F, Martin L, de Bruin B, Becker R, Woutersen S, Reek JNH (2014) Inorg Chem 53:5373–5383

    Article  CAS  PubMed  Google Scholar 

  23. Abul-Futouh H, Zagranyarski Y, Müller C, Schulz M, Kupfer S, Görls H, El-khateeb M, Gräfe S, Dietzek B, Peneva K, Weigand W (2017) Dalton Trans 46:11180–11191

    Article  CAS  PubMed  Google Scholar 

  24. Samuel APS, Co DT, Stern CL, Wasielewski MR (2010) J Am Chem Soc 132:8813–8815

    Article  CAS  PubMed  Google Scholar 

  25. Mebi CA, Karr DS, Gao R (2011) J Coord Chem 64:4397–4407

    Article  CAS  Google Scholar 

  26. Poddutoori P, Co DT, Samuel APS, Kim CH, Vagnini MT, Wasielewski MR (2011) Energy Environ Sci 4:2441–2450

    Article  CAS  Google Scholar 

  27. Oudsen JPH, Venderbosch B, Korstanje TJ, Tromp M (2020) RSC Adv 10:729–738

    Article  CAS  Google Scholar 

  28. Abul-Futouh H, Skabeev A, Botteri D, Zagranyarski Y, Görls H, Weigand W, Peneva K (2018) Organometallics 37:3278–3285

    Article  CAS  Google Scholar 

  29. Hekmatshoar R, Beheshtiha SYS, Nazari A, Faridbod F (2006) Relat Elem 181:1521–1526

    Article  CAS  Google Scholar 

  30. Peters AT, Saeid Y, Behesti S (1986) J Chem Tech Biotechnol 36:291–343

    Google Scholar 

  31. Felton GAN, Glass RS, Lichtenberger DL, Evans DH (2006) Inorg Chem 45:9181–9184

    Article  CAS  PubMed  Google Scholar 

  32. Mebi CA, Karr DS, Noll BC (2013) Polyhedron 50:164–168

    Article  CAS  Google Scholar 

  33. Mebi CA, Trujillo JJ, Rosenthal BL, Bowman RB, Noll BC, Desrochers PJ (2012) Trans Met Chem 37:645–650

    Article  CAS  Google Scholar 

  34. Suchland B, Malassa A, Görls H, Krieck S, Westerhausen M (2020) Z Anorg Allg Chem 646:125–132

    Article  CAS  Google Scholar 

  35. Si Y, Hu M, Chen C (2008) C R Chimie 11:932–937

    Article  CAS  Google Scholar 

  36. Sánchez S, Woo AYY, Baumgartner T (2017) Mater Chem Front 1:2324–2334

    Article  Google Scholar 

  37. Hall GB, Chen J, Mebi CA, Okumura N, Swenson MT, Ossowski SE, Zakai UI, Nichol GS, Lichtenberger DL, Evans DH, Glass RS (2013) Organometallics 32:6605–6612

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was partially supported by grants from American Chemical Society - Petroleum Research Fund, Arkansas Tech University, and NASA- Arkansas Space Grant Consortium. The authors thank other group members for their contributions to the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Mebi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mebi, C.A., Labrecque, J.H. & Williams, A.A. Metalloenzyme mimic: diironhexacarbonyl cluster coupled to redox-active 4-mercapto-1,8-naphthalic anhydride ligands. Transit Met Chem 45, 577–581 (2020). https://doi.org/10.1007/s11243-020-00410-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-020-00410-y

Navigation