Skip to main content
Log in

Numerical Simulation of a Coke Oven Using Decoupling Techniques

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Cokemaking is an important unit operation in an integrated steel plant as coke quality has a strong influence on blast furnace performance. A two-dimensional (2D) model coupling physico-chemical phenomena inside combustion and coking chambers of a coke oven has been presented. It was implemented using the computational fluid dynamics software Ansys Fluent and was solved by a serial decoupling approach to improve convergence and to reduce computational time. The model predictions for gas temperatures inside the combustion chamber and the effect of coal moisture content on evolution of coke bed temperatures are in reasonable agreement with published experimental data. The computational time required for the 2D model is six times lower than that for a corresponding three-dimensional model. This model is useful for model-based optimization of cokemaking and for designing coke ovens with reduced computational burden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Loison R, Foch P, and Boyer A, Coke: Quality and Production. 2nd edn, Butterworth-Heinemann, Oxford (1989).

  2. Isaev M V, and Sultanguzin, I A, Coke Chem, 53 (2010) p 305.

    Article  Google Scholar 

  3. Toll H, and Worberg R, Rev Metall100 (2003) p 243.

    Article  CAS  Google Scholar 

  4. Nomura S, Fuel Process Technol, 159 (2017) p 1.

    Article  CAS  Google Scholar 

  5. Merrick D, Fuel, 62 (1983) p 534.

    Article  CAS  Google Scholar 

  6. Atkinson B, and Merrick D, Fuel, 62 (1983) p 553.

    Article  CAS  Google Scholar 

  7. Osinski E J, Barr P V, and Brimacombe J K, Ironmak Steelmak, 20 (1993) p 350.

    CAS  Google Scholar 

  8. Lin W, Feng Y, and Zhang X, Appl Thermal Eng, 81 (2015) p 353.

    Article  CAS  Google Scholar 

  9. Merrick D, Fuel, 62 (1983) p 547.

    Article  CAS  Google Scholar 

  10. Das S K, Godiwalla K M, and Mehrotra S P, High Temp Mater Process, 26 (2007) p 43.

    Article  CAS  Google Scholar 

  11. Jin K, Feng Y, Zhang X, Wang M, Yang J, and Ma X, Appl Therm Eng, 58 (2013) p 354.

    Article  CAS  Google Scholar 

  12. Zhang A Q, Feng Y H, Zhang X X, Wang M D, Yang J F and Xu Y, ISIJ Intl, 53 (2013) p 995.

    Article  CAS  Google Scholar 

  13. Gamrat S, Poraj J, Bodys J, Smolka J, and Adamczyk W, Fuel Process Technol152 (2016) p 430.

    Article  CAS  Google Scholar 

  14. Li Z, Yi Q, Zhang Y, Zhou H, Zhao Y, Huang Y, Gao D, and Hao Y, J Clean Prod, 252 (2020) p 119656.

    Article  CAS  Google Scholar 

  15. Guo Z and Tang H, China Particuol, 3 (2005) p 373.

    Article  Google Scholar 

  16. Słupik L, Fic A, Buliński Z, Nowak A J, Kosyrczyk L, and Łabojko G, Fuel, 150 (2015) p 415.

    Article  Google Scholar 

  17. Poraj J, Gamrat S, Bodys J, Smolka J, and Adamczyk W, Clean Technol Environ Policy, 18 (2016) p 1815.

    CAS  Google Scholar 

  18. Zheng Q, and Wei H, Energy Fuels, 27 (2013) p 3570.

    Article  CAS  Google Scholar 

  19. Buczynski R, Weber R, and Kim R, Schwöppe P, Appl Therm Eng, 144 (2018) p 170.

    Article  Google Scholar 

  20. Tian Z, Li S, Wang Y, J Chem Eng Jpn, 51 (2018) p 683.

    Article  CAS  Google Scholar 

  21. ANSYS Fluent User Guide R17, ANSYS, Inc., Canonsburg, PA, USA (2016).

  22. Patankar S V, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York (1980).

    Google Scholar 

Download references

Acknowledgements

The authors thank the management of Tata Consultancy Services Limited to publish this work, and Mr. K. Ananth Krishnan and Dr. Gautam Shroff for their encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkataramana Runkana.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beejawat, S., Parihar, M.S., Premraj, K. et al. Numerical Simulation of a Coke Oven Using Decoupling Techniques. Trans Indian Inst Met 73, 1709–1714 (2020). https://doi.org/10.1007/s12666-020-02023-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02023-6

Keywords

Navigation