Skip to main content
Log in

Theoretical investigation of machining-induced residual stresses in longitudinal torsional ultrasonic–assisted milling

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In order to realize the compressive stress and antifatigue manufacturing of titanium alloy TI-6Al-4V, a compound processing of longitudinal-torsional ultrasonic vibration and milling (LTUM) is proposed, a theoretical prediction model of machining-induced residual stress (RS) is established, and it is validated by experiments. The trajectory model of cutting edge in LTUM is constructed; furthermore, the undeformed chip thickness (UCT) model of LTUM is structured; The mechanical stress model of LTUM is established from the shear stress and plow stress; the thermal stress model of LTUM is established from shear thermal stress and plow thermal stress; Considering mechanical and thermal stress, the residual stress of longitudinal-torsional ultrasonic milling is established by loading and releasing stress. From numerical simulation of mechanical stress and thermal stress model, it shows that in LTUM, stress fluctuates with ultrasonic vibration, and mechanical stress absolute value is larger than that of traditional machining (TM); thermal stress absolute value is less than that of TM. A series of experiments are carried out to verify the RS model of LTUM. From present work, through theoretical prediction and experimental verification of machining-induced residual stress, it is concluded that established theoretical model predicts properties, and distribution of residual stress with high accuracy and the LTUM significantly increases surface compressive stress and compressive stress layer depth. It lays a foundation for the compressive stress and fatigue resistance of titanium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

vƒ :

Feed speed

ϕs :

Shear angel

ƒ:

Ultrasonic frequency

h jlt :

UCT of LTUM

Rt :

Tool radius

q w-pl :

Heat source density

Al :

Longitudinal amplitude

λt:

Heat conductivity

At :

Torsional amplitude

a t :

Heat loss density

n:

Spindle speed

τsfr :

Friction stress

ν:

Cutting speed

mƒ :

Friction coefficient

β :

Tool helix angle

Kt, Kr:

Cutting force coefficient

αl :

Tool lead angle

σxxme, σyyme, σxymeб :

Mechanical stress

ω n-t :

Tool actual turning angle

σxxs, σyys, σxys :

Shear stress

ω l-t :

Torsional vibration angle

σxxp, σyyp, σxyp :

Plow stress

φl-t :

Longitudinal-torsional phase difference

σxxth, σyyth, σxyth :

Thermal stress

αp :

Depth of cut

σxxel, σyyel, σxyel :

Internal stress

ψl :

Axial hysteresis angle

RS:

Residual stress

ϕst, ϕex :

Cutting-in and cutting-out angle

LTUM:

Longitudinal torsional ultrasonic vibration milling

re :

Cutting edge radius

UCT:

Undeformed chip thickness

αtl rake-ACT:

Actual cutting time

qs, ps :

Shear and normal stress

References

  1. Su Y, Li L, Wang G, Zhong X (2018) Cutting mechanism and performance of high-speed machining of a titanium alloy using a super-hard textured tool. J Manuf Process 34:706–712. https://doi.org/10.1016/j.jmapro.2018.07.004

    Article  Google Scholar 

  2. Kuttolamadom M, Jones J, Mears L, Von Oehsen J, Kurfess T, Ziegert J (2017) High performance computing simulations to identify process parameter designs for profitable titanium machining. J Manuf Syst 43:235–247. https://doi.org/10.1016/j.jmsy.2017.02.014

    Article  Google Scholar 

  3. Mosleh AO, Mikhaylovskaya AV, Kotov AD, Kwame JS (2019) Experimental, modelling and simulation of an approach for optimizing the superplastic forming of Ti-6%Al-4%V titanium alloy. J Manuf Process 45:262–272. https://doi.org/10.1016/j.jmapro.2019.06.033

    Article  Google Scholar 

  4. Luo M, Wang J, Wu B, Zhang D (2017) Effects of cutting parameters on tool insert wear in end milling of titanium alloy Ti6Al4V. Chin J Mech Eng 30:53–59. https://doi.org/10.3901/CJME.2016.0405.045

    Article  Google Scholar 

  5. Yang D, Xiao X, Liu Y, Sun J (2019) Peripheral milling-induced residual stress and its effect on tensile-tensile fatigue life of aeronautic titanium alloy Ti-6Al-4V. Aeronaut J 123:212–229. https://doi.org/10.1017/aer.2018.151

    Article  Google Scholar 

  6. Xin H, Shi Y, Ning L, Zhao T (2016) Residual stress and affected layer in disc milling of titanium alloy. Mater Manuf Process 31:1645–1653. https://doi.org/10.1080/10426914.2015.1090583

    Article  Google Scholar 

  7. Niu Y, Jiao F, Zhao B, Wang X (2019) 3D finite element simulation and experimentation of residual stress in longitudinal torsional ultrasonic assisted milling. Jixie Gongcheng Xuebao/J Mech Eng 55:224–232. https://doi.org/10.3901/JME.2019.13.224

    Article  Google Scholar 

  8. Zeng HH, Yan R, Peng FY, Zhou L, Deng B (2017) An investigation of residual stresses in micro-end-milling considering sequential cuts effect. Int J Adv Manuf Technol 91:3619–3634. https://doi.org/10.1007/s00170-017-0088-5

    Article  Google Scholar 

  9. Peng FY, Dong Q, Yan R, Zhou L, Zhan C (2016) Analytical modeling and experimental validation of residual stress in micro-end-milling. Int J Adv Manuf Technol 87:3411–3424. https://doi.org/10.1007/s00170-016-8697-y

    Article  Google Scholar 

  10. Zhou R, Yang W (2017) Analytical modeling of residual stress in helical end milling of nickel-aluminum bronze. Int J Adv Manuf Technol 89:987–996. https://doi.org/10.1007/s00170-016-9145-8

    Article  Google Scholar 

  11. Wan M, Ye X, Yang Y, Zhang W (2017) Theoretical prediction of machining-induced residual stresses in three-dimensional oblique milling processes. Int J Mech Sci 133:426–437. https://doi.org/10.1016/j.ijmecsci.2017.09.005

    Article  Google Scholar 

  12. Ji X, Liang SY (2017) Model-based sensitivity analysis of machining-induced residual stress under minimum quantity lubrication. Proc Inst Mech Eng B J Eng Manuf 231:1528–1541. https://doi.org/10.1177/0954405415601802

    Article  Google Scholar 

  13. Aliakbari K, Farhangdoost K (2014) The investigation of modeling material behavior in autofrettaged tubes made from aluminium alloys. Int J Eng Trans B Appl 27:803–810. https://doi.org/10.5829/idosi.ije.2014.27.05b.17

    Article  Google Scholar 

  14. Huang X, Zhang X, Ding H (2017) An enhanced analytical model of residual stress for peripheral milling. Procedia Cirp 58:387–392. https://doi.org/10.1016/j.procir.2017.03.245

    Article  Google Scholar 

  15. Li X, Li W, Wang C, Yang S, Shi H (2018) Surface integrity and anti-fatigue performance of TC4 titanium alloy by mass finishing. Zhongguo Biaomian Gongcheng/China Surf Eng 31:15–25. https://doi.org/10.11933/j.issn.1007-9289.20170725001

    Article  Google Scholar 

  16. Li X, Zhao P, Niu Y, Guan C (2017) Influence of finish milling parameters on machined surface integrity and fatigue behavior of Ti1023 workpiece. Int J Adv Manuf Technol 91:1297–1307. https://doi.org/10.1007/s00170-016-9818-3

    Article  Google Scholar 

  17. Pawar S, Joshi SS (2016) Experimental analysis of axial and torsional vibrations assisted tapping of titanium alloy. J Manuf Process 22:7–20. https://doi.org/10.1016/j.jmapro.2016.01.006

    Article  Google Scholar 

  18. Niu Y, Jiao F, Zhao B, Gao G (2019) Investigation of cutting force in longitudinal- torsional ultrasonic-assisted milling of Ti-6Al-4V. Materials 12. https://doi.org/10.3390/ma12121955

  19. Niu Y, Jiao F, Zhao B, Wang D (2017) Multiobjective optimization of processing parameters in longitudinal-torsion ultrasonic assisted milling of Ti-6Al-4V. Int J Adv Manuf Technol 93:4345–4356. https://doi.org/10.1007/s00170-017-0871-3

    Article  Google Scholar 

  20. Travieso-Rodriguez JA, Gomez-Gras G, Dessein G, Carrillo F, Alexis J, Jorba-Peiro J, Aubazac N (2015) Effects of a ball-burnishing process assisted by vibrations in G10380 steel specimens. Int J Adv Manuf Technol 81:1757–1765. https://doi.org/10.1007/s00170-015-7255-3

    Article  Google Scholar 

  21. Sharma V, Pandey PM (2016) Optimization of machining and vibration parameters for residual stresses minimization in ultrasonic assisted turning of 4340 hardened steel. Ultrasonics 70:172–182. https://doi.org/10.1016/j.ultras.2016.05.001

    Article  Google Scholar 

  22. Hu K, Lo S, Wu H, To S (2019) Study on influence of ultrasonic vibration on the ultra-precision turning of Ti6Al4V alloy based on simulation and experiment. IEEE Access 7:33640–33651. https://doi.org/10.1109/ACCESS.2019.2896731

    Article  Google Scholar 

  23. Zhou K, Chen Y, Du ZW, Niu FL (2015) Surface integrity of titanium part by ultrasonic magnetic abrasive finishing. Int J Adv Manuf Technol 80:997–1005. https://doi.org/10.1007/s00170-015-7028-z

    Article  Google Scholar 

  24. Maurotto A, Wickramarachchi CT (2016) Experimental investigations on effects of frequency in ultrasonically-assisted end-milling of AISI 316L: a feasibility study. Ultrasonics 65:113–120. https://doi.org/10.1016/j.ultras.2015.10.012

    Article  Google Scholar 

  25. Ye Y, Kure-Chu S, Sun Z, Li X, Wang H, Tang G (2018) Nanocrystallization and enhanced surface mechanical properties of commercial pure titanium by electropulsing-assisted ultrasonic surface rolling. Mater Des 149:214–227. https://doi.org/10.1016/j.matdes.2018.04.027

    Article  Google Scholar 

  26. Amin M, Yuan S, Israr A, Zhen L, Qi W (2018) Development of cutting force prediction model for vibration-assisted slot milling of carbon fiber reinforced polymers. Int J Adv Manuf Technol 94:3863–3874. https://doi.org/10.1007/s00170-017-1087-2

    Article  Google Scholar 

  27. Lazoglu I, Ulutan D, Alaca BE, Engin S, Kaftanoglu B (2008) An enhanced analytical model for residual stress prediction in machining. CIRP Ann Manuf Technol 57:81–84. https://doi.org/10.1016/j.cirp.2008.03.060

    Article  Google Scholar 

  28. Waldorf DJ, DeVor RE, Kapoor SG (1998) Slip-line field for ploughing during orthogonal cutting. J Manuf Sci Eng Trans ASME 120:693–698. https://doi.org/10.1115/1.2830208

    Article  Google Scholar 

  29. Dewhurst P, Collins IF (1973) A matrix technique for constructing slip-line field solutions to a class of plane strain plasticity problems. Int J Numer Methods Eng 7:357–378. https://doi.org/10.1002/nme.1620070312

    Article  MATH  Google Scholar 

  30. Su J, Young KA, Srivatsa S, Morehouse JB, Liang SY (2013) Predictive modeling of machining residual stresses considering tool edge effects. Prod Eng 7:391–400. https://doi.org/10.1007/s11740-013-0470-6

    Article  Google Scholar 

  31. Ulutan D, Erdem Alaca B, Lazoglu I (2007) Analytical modelling of residual stresses in machining. J Mater Process Technol 183:77–87. https://doi.org/10.1016/j.jmatprotec.2006.09.032

    Article  Google Scholar 

  32. Ying N, Feng J, Bo Z (2020) A novel 3D finite element simulation method for longitudinal-torsional ultrasonic-assisted milling. Int J Adv Manuf Technol 106:385–400. https://doi.org/10.1007/s00170-019-04636-8

    Article  Google Scholar 

Download references

Funding

The paper is sponsored by the China Postdoctoral Science Foundation (No. 2019M662493) and the National Natural Science Foundation of China (No. 51675164, No. U1604255, No.51875179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiao Feng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, N., Feng, J., Bo, Z. et al. Theoretical investigation of machining-induced residual stresses in longitudinal torsional ultrasonic–assisted milling. Int J Adv Manuf Technol 108, 3689–3705 (2020). https://doi.org/10.1007/s00170-020-05495-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05495-4

Keywords

Navigation