Skip to main content
Log in

Development of sandwich joining piece to fabricate segmented half-Heusler/skutterudite thermoelectric joints

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Sn/Ni–Sn/Sn sandwich joining piece was developed and applied to fabricate segmented half-Heusler/skutterudite thermoelectric joints, and high-temperature service behavior of the joints was studied. The microstructure and contact resistance of the joint before and after aging were investigated. The joints are well bonded and no cracks appear at the interfaces of the joint before and after aging, which can be attributed to the formation of high-melting point intermetallic compounds. The electrical resistance crosses the joining layer smoothly and the contact resistance is low. These results show that the sandwich joining piece is effective and flexible, and promising for the preparation of segmented thermoelectric devices.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Woerner D. A progress report on the eMMRTG. J Electron Mater. 2016;45(3):1278.

    Article  CAS  Google Scholar 

  2. Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science. 2008;321(5895):1457.

    Article  CAS  Google Scholar 

  3. Gou X, Yang S, Xiao H, Ou Q. A dynamic model for thermoelectric generator applied in waste heat recovery. Energy. 2013;52:201.

    Article  Google Scholar 

  4. Liu X, Deng YD, Li Z, Su CQ. Performance analysis of a waste heat recovery thermoelectric generation system for automotive application. Energ Convers Manag. 2015;90:121.

    Article  Google Scholar 

  5. Rowe DM. CRC Handbook of Thermoelectrics. Washington: CRC Press; 1995. 39.

    Google Scholar 

  6. Li JH, Tan Q, Li JF, Liu DW, Li F, Li ZY, Zou MM, Wang K. BiSbTe-based nanocomposites with high ZT: the effect of SiC nanodispersion on thermoelectric properties. Adv Funct Mater. 2013;23(35):4317.

    Article  CAS  Google Scholar 

  7. Son JH, Oh MW, Kim BS, Park SD. Optimization of thermoelectric properties of n-type Bi2(Te, Se)3 with optimizing ball milling time. Rare Met. 2018;36(4):350.

    Google Scholar 

  8. Zhai RS, Wu YH, Zhu TJ, Zhao XB. Thermoelectric performance of p-type zone-melted Se-doped Bi0.5Sb1.5Te3 alloys. Rare Met. 2018;36(4):308.

    Article  Google Scholar 

  9. Feng H, Qiu PF, Tang YS, Bai SQ, Xing T, Chu HS, Zhang QH, Lu P, Zhang TS, Ren DD, Chen JK, Shi X, Chen LD. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C. Energ Environ Sci. 2016;9(10):3120.

    Article  Google Scholar 

  10. Chen ZW, Jian ZZ, Li W, Chang YJ, Ge BG, Hanus R, Yang J, Chen Y, Huang MX, Snyder GJ, Pei YZ. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Adv Mater. 2017;29(23):1521.

    Google Scholar 

  11. Pei J, Li LL, Liu DW, Zhang BP, Xiao Y, Li JF. Development of integrated two-stage thermoelectric generators for large temperature difference. Sci China Technol Sc. 2019;62(9):1596.

    Article  CAS  Google Scholar 

  12. Zhang QH, Zhou ZX, Dylla M, Agne MT, Pei YZ, Wanga LJ, Tang YS, Liao JC, Li J, Bai SQ, Jiang W, Chen LD, Snyder GJ. Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites. Nano Energy. 2017;41:501.

    Article  CAS  Google Scholar 

  13. Yao Z, Qiu PF, Li XY, Chen LD. Investigation on quick fabrication of n-type filled skutterudites. J Inorg Mater. 2016;31(12):1375.

    Article  Google Scholar 

  14. Zhang SS, Yang DF, Shaheen N, Shen XC, Xie DD, Yan YC, Lu X, Zhou XY. Enhanced thermoelectric performance of CoSbS0.85Se0.15 by point defect. Rare Met. 2018;36(4):326.

    Article  Google Scholar 

  15. Fu CG, Zhu TJ, Liu YT, Xie HH, Zhao XB. Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT > 1. Energ Environ Sci. 2015;8(1):216.

    Article  CAS  Google Scholar 

  16. Xing YF, Liu RH, Sun YY, Chen F, Zhao KP, Zhu TJ, Bai SQ, Chen LD. Self-propagation high-temperature synthesis of half-Heusler thermoelectric materials: reaction mechanism and applicability. J Mater Chem A. 2018;6(40):19470.

    Article  CAS  Google Scholar 

  17. Zhang QH, Huang XY, Bai SQ, Shi X, Uher C, Chen LD. e Challenges. Adv Eng Mater. 2016;18(2):194.

    Article  CAS  Google Scholar 

  18. Ouyang ZL, Li DW. Design of segmented high-performance thermoelectric generators with cost in consideration. App Energ. 2018;221:112.

    Article  CAS  Google Scholar 

  19. Ouyang Z, Li DW. Modelling of segmented high-performance thermoelectric generators with effects of thermal radiation electrical and thermal contact resistances. Sci Rep. 2016;6:24123.

    Article  CAS  Google Scholar 

  20. Kang YS, Niino M, Nishida IA, Yoshino J. Development and evaluation of 3-stage segmented thermoelectric elements. Proceedings of the 1998 17th International Conference on Thermoelectrics, Nagoya, 1998. 297.

  21. Li SY, Pei J, Liu DW, Bao LL, Li JF, Wu HQ, Li LL. Fabrication and characterization of thermoelectric power generators with segmented legs synthesized by one-step spark plasma sintering. Energy. 2016;113:35.

    Article  CAS  Google Scholar 

  22. Wannasut P, Prayoonphokkharat P, Jaiban P, Keawprak N, Watcharapasorn A. Thermoelectric properties of YBa2Cu3O7-x-NayCoO2 segmented oxide ceramics. Mater Lett. 2019;236:378.

    Article  CAS  Google Scholar 

  23. Hung LH, Nong NV, Snyder GJ, Viet MH, Balke B, Han L, Stamate E, Linderoth S, Pryds N. High performance p-type segmented leg of misfit-layered cobaltite and half-Heusler alloy. Energ Convers Manag. 2015;99:20.

    Article  CAS  Google Scholar 

  24. Zhang QH, Liao JC, Tang YS, Gu M, Ming C, Qiu PF, Bai SQ, Shi X, Uher C, Chen LD. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energ Environ Sci. 2017;10(4):956.

    Article  CAS  Google Scholar 

  25. Yang TH, Yu HY, Wang YW, Kao CR. Effects of aspect ratio on microstructural evolution of Ni/Sn/Ni microjoints. J Electron Mater. 2019;48(1):9.

    Article  CAS  Google Scholar 

  26. Xiong JT, Li JL, Zhang FS, Huang WD. Joining of 2D C/SiC composites with niobium alloy. J Inorg Mater. 2006;21(6):1391.

    CAS  Google Scholar 

  27. Feng HL, Huang JH, Yang J, Zhou SK, Zhang R, Chen SH. A Transient liquid phase sintering bonding process using nickel-tin mixed powder for the new generation of high-temperature power devices. J Electron Mater. 2017;46(7):4152.

    Article  CAS  Google Scholar 

  28. Mi JL, Zhao XB, Zhu TJ. Solvothermal synthesis and thermoelectric properties of skutterudite compound Fe0.25Ni0.25Co0.5Sb3. Rare Met. 2009;28(3):1001.

    Article  Google Scholar 

  29. Tang YS, Bai SQ, Ren DD, Liao JC, Zhang LT, Cheng LD. Interface structure and electrical property of Yb0.3Co4Sb12/Mo-Cu element prepared by welding using Ag–Cu–Zn solder. J Inorg Mater. 2015;30(3):256.

    Article  CAS  Google Scholar 

  30. Okamoto H. Ni-Sn (Nickel-Tin). J Phase Equilib Diffus. 2008;29(3):297.

    Article  CAS  Google Scholar 

  31. Gu M, Xia XG, Li XY, Huang XY, Chen LD. Microstructural evolution of the interfacial layer in the Ti–Al/Yb0.6Co4Sb12 thermoelectric joints at high temperature. J Alloys Compd. 2014;610:665.

    Article  CAS  Google Scholar 

  32. Zhang QH, Liao JC, Tang YS, Gu M, Liu RH, Bai SQ, Chen LD. Interface stability of skutterudite thermoelectric materials/Ti88Al12. J Inorg Mater. 2018;33(8):889.

    Article  Google Scholar 

  33. Hu XK, Zhang SM, Zhao F. Thermoelectric device: contact interface and interface materials. J Inorg Mater. 2019;34(3):269.

    Article  Google Scholar 

  34. Liu HS, Wang J, Jin ZP. Thermodynamic optimization of the Ni-Sn binary system. Calphad. 2004;28(4):363.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. U1738114, 51372261 and 51879089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ya Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, WA., Li, XY., Xing, YF. et al. Development of sandwich joining piece to fabricate segmented half-Heusler/skutterudite thermoelectric joints. Rare Met. 40, 1966–1970 (2021). https://doi.org/10.1007/s12598-020-01487-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01487-1

Keywords

Navigation