Skip to main content
Log in

Hierarchical Fe3O4@C nanofoams derived from metal–organic frameworks for high-performance lithium storage

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A facile method was employed to in situ prepare hierarchical mesoporous Fe3O4@C nanofoams through pyrolysis of a post-treated MIL-53(Fe) precursor. Well-defined carbon network-encapsulated ultrasmall and uniform Fe3O4 octahedrons can be obtained by controlling the pyrolysis temperature. This unique artificial shows the excellent lithium storage performance. A reversible discharge capacity of 861.9 mAh·g−1 is observed at 0.1 A·g−1 after 300 cycles. Even at a high current density of 1 A·g−1, the reversible discharge capacity can still reach 605.2 mAh·g−1 after 500 cycles. Good rate capability is also observed, as the specific discharge capacities are 833.6, 729.9, 666.8, 643.6 and 635.6 mAh·g−1 at current density of 0.2, 0.5, 0.8, 1.0 and 1.2 A·g−1, respectively. The attractive electrochemical performance of Fe3O4@C nanofoams should be attributed to the hierarchical foam-like structure, which can effectively relieve the volume change during the lithiation/delithiation process and facilitate fast lithium-ion and electron transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Deng D. Li-ion batteries: basics, progress, and challenges. Energy Sci. Eng. 2015;3(5):385.

    Article  Google Scholar 

  2. Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019;38(3):199.

    Article  CAS  Google Scholar 

  3. Xu B, Qi S, Jin M, Cai X, Lai L, Sun Z, Han X, Lin Z, Shao H, Peng P, Xiang Z, Elshof JET, Tan R, Liu C, Zhang Z, Duan X, Ma J. 2020 roadmap on two-dimensional materials for energy storage and conversion. Chinese Chem. Lett. 2019;30(12):2053.

    Article  CAS  Google Scholar 

  4. Yan Z, Yang QW, Wang Q, Ma J. Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. Chinese Chem. Lett. 2020;31(2):583.

    Article  CAS  Google Scholar 

  5. Dong Y, Feng Y, Deng J, He P, Ma J. Electrospun Sb2Se3@C nanofibers with excellent lithium storage properties. Chinese Chem. Lett. 2020. https://doi.org/10.1016/j.cclet.2019.11.039.

    Article  Google Scholar 

  6. Zhang DW, Qian A, Chen JJ, Wen JW, Wang L, Chen CH. Electrochemical performances of nano-Co3O4 with different morphologies as anode materials for Li-ion batteries. Ionics. 2012;18(6):591.

    Article  CAS  Google Scholar 

  7. Wu H, Du N, Wang JZ, Zhang H, Yang DR. Three-dimensionally porous Fe3O4 as high-performance anode materials for lithium-ion batteries. J Power Sources. 2014;246:198.

    Article  CAS  Google Scholar 

  8. Pan Y, Zeng WJ, Li L, Zhang YZ, Dong YN, Ye K, Cheng K, Cao DX, Wang GL, Lucht BL. Surfactant assisted, one-step synthesis of Fe3O4 nanospheres and further modified Fe3O4/C with excellent lithium storage performance. J Electroanal Chem. 2018;810:248.

    Article  CAS  Google Scholar 

  9. Zhong KF, Xia X, Zhang B, Li H, Wang ZX, Chen LQ. MnO powder as anode active materials for lithium ion batteries. J Power Sources. 2010;195(10):3300.

    Article  CAS  Google Scholar 

  10. Zhang WM, Wu XL, Hu JS, Guo YG, Wan LJ. Carbon Coated Fe3O4 Nanospindles as a Superior Anode Material for Lithium-Ion Batteries. Adv Funct Mater. 2008;18(24):3941.

    Article  CAS  Google Scholar 

  11. Li H, Xu R, Wang Y, Qian B, Wang H, Chen L, Jiang H, Yang Y, Xua Y. In situ synthesis of hierarchical mesoporous Fe3O4@C nanowires derived from coordination polymers for high-performance lithium-ion batteries. RSC Adv. 2014;4(94):51960.

    Article  CAS  Google Scholar 

  12. Suo Y, Zhao QQ, Meng JK, Li J, Zheng XC, Guan XX, Liu YS, Zhang JM. Fabrication and electrochemical properties of 3D Fe3O4@graphene aerogel composites as lithium-ion battery anodes. Mater Lett. 2016;174:36.

    Article  CAS  Google Scholar 

  13. Liang CL, Liu Y, Bao RY, Luo Y, Yang W, Xie BH, Yang MB. Effects of Fe3O4 loading on the cycling performance of Fe3O4/rGO composite anode material for lithium ion batteries. J Alloy Compd. 2016;678:80.

    Article  CAS  Google Scholar 

  14. Dong BT, Li MY, Xiao CH, Ding DW, Gao GX, Ding SJ. Tunable growth of perpendicular cobalt ferrite nanosheets on reduced graphene oxide for energy storage. Nanotechnology. 2017;28(5):055401.

    Article  CAS  Google Scholar 

  15. Luo H, Huang K, Sun B, Zhong JX. Strategy to Synthesize Fe3O4/C Nanotubes as Anode Material for Advanced Lithium-Ion Batteries. Electrochim Acta. 2014;149:11.

    Article  CAS  Google Scholar 

  16. Zhang WL, Hou XH, Shen JD, He SJ, Ru Q, Lam KH. Magnetic PSA-Fe3O4@C 3D mesoporous microsphere as anode for lithium ion batteries. Electrochim Acta. 2016;188:734.

    Article  CAS  Google Scholar 

  17. Gao GX, Lu SY, Dong BT, Zhang ZC, Zheng YS, Ding SJ. One-pot synthesis of carbon coated Fe3O4 nanosheets with superior lithium storage capability. J. Mater. Chem. A. 2015;3(8):4716.

    Article  CAS  Google Scholar 

  18. Xiang Y, Wu H, Zhang KH, Coto M, Zhao T, Chen S, Dong BT, Lu SY, Abdelkader A, Guo YZ, Zhang YF, Ding SJ, Xi K, Gao GX. Quick one-pot synthesis of amorphous carbon-coated cobalt-ferrite twin elliptical frustums for enhanced lithium storage capability. J. Mater. Chem. A. 2017;5(17):8062.

    Article  CAS  Google Scholar 

  19. Qasem NAA, Ben-Mansour R. Energy and productivity efficient vacuum pressure swing adsorption process to separate CO2 from CO2/N2 mixture using Mg-MOF-74: a CFD simulation. Appl. Energ. 2018;209:190.

    Article  CAS  Google Scholar 

  20. Han GP, Wang KK, Peng YG, Zhang YX, Huang HL, Zhong CL. Enhancing Higher Hydrocarbons Capture for Natural Gas Upgrading by Tuning van der Waals Interactions in fcu-Type Zr-MOFs. Ind Eng Chem Res. 2017;56(49):14633.

    Article  CAS  Google Scholar 

  21. Zheng FC, He MN, Yang Y, Chen QW. Nano electrochemical reactors of Fe2O3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium-ion batteries. Nanoscale. 2015;7(8):3410.

    Article  CAS  Google Scholar 

  22. Liu PP, Zhu HL, Zheng YQ. Hybrid MnO/C nanorod arrays derived from a MOF precursor with enhanced oxygen evolution activity. J Mater Sci. 2018;53(16):11574.

    Article  CAS  Google Scholar 

  23. Yang Q, Feng CQ, Liu JW, Guo ZP. Synthesis of porous Co3O4/C nanoparticles as anode for Li-ion battery application. Appl Surf Sci. 2018;443:401.

    Article  CAS  Google Scholar 

  24. Horcajada P, Serre C, Maurin G, Ramsahye NA, Balas F, Vallet-Regi M, Sebban M, Taulelle F, Ferey G. Flexible porous metal-organic frameworks for a controlled drug delivery. J Am Chem Soc. 2008;130(21):6774.

    Article  CAS  Google Scholar 

  25. Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS. Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal. ACS Nano. 2010;4(7):3979.

    Article  CAS  Google Scholar 

  26. Zhang X, Chen HX, Xie YP, Guo JX. Ultralong life lithium-ion battery anode with superior high-rate capability and excellent cyclic stability from mesoporous Fe2O3@TiO2 core-shell nanorods. J. Mater. Chem. A. 2014;2(11):3912.

    Article  CAS  Google Scholar 

  27. Cao KZ, Jiao LF, Xu H, Liu HQ, Kang HY, Zhao Y, Liu YC, Wang YJ, Yuan HT. Reconstruction of Mini-Hollow Polyhedron Mn2O3 Derived from MOFs as a High-Performance Lithium Anode Material. Adv. Sci. 2016;3(3):1500185.

    Article  CAS  Google Scholar 

  28. Zhao B, Zheng Y, Ye F, Deng X, Xu XM, Liu ML, Shao ZP. Multifunctional Iron Oxide Nanoflake/Graphene Composites Derived from Mechanochemical Synthesis for Enhanced Lithium Storage and Electrocatalysis. ACS Appl. Mater. Inter. 2015;7(26):14446.

    Article  CAS  Google Scholar 

  29. Jin SL, Deng HG, Long DH, Liu XJ, Zhan LA, Liang XY, Qiao WM, Ling LC. Facile synthesis of hierarchically structured Fe3O4/carbon micro-flowers and their application to lithium-ion battery anodes. J Power Sources. 2011;196(8):3887.

    Article  CAS  Google Scholar 

  30. Piao YZ, Kim HS, Sung YE, Hyeon T. Facile scalable synthesis of magnetite nanocrystals embedded in carbon matrix as superior anode materials for lithium-ion batteries. Chem Commun. 2010;46(1):118.

    Article  CAS  Google Scholar 

  31. Wang P, Gao MX, Pan HG, Zhang JL, Liang C, Wang JH, Zhou P, Liu YF. A facile synthesis of Fe3O4/C composite with high cycle stability as anode material for lithium-ion batteries. J Power Sources. 2013;239:466.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21501071, 51805219 and 51902139), the Six Talents Peak Project of Jiangsu Province (Nos. 2016-XNYQC-003 and 2016-XNYQC-008), the Transformation of Scientific and Technology Achievements in Jiangsu Province (No. BA2016162) and China Postdoctoral Science Foundation (No. 2019TQ0126).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huan-Huan Li or Xiao-Xin Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HH., Saini, A., Xu, RY. et al. Hierarchical Fe3O4@C nanofoams derived from metal–organic frameworks for high-performance lithium storage. Rare Met. 39, 1072–1081 (2020). https://doi.org/10.1007/s12598-020-01466-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01466-6

Keywords

Navigation