Skip to main content
Log in

P2X7 receptor antagonism inhibits tumour growth in human high-grade gliomas

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Gliomas, the most common primary brain cancer, are highly infiltrative and extremely difficult to treat. Despite advancements, current treatment is limited, with patients surviving for a median of 14–15 months post-diagnosis. Previous research has demonstrated the upregulation of a purinergic receptor, P2X7R, in human gliomas. P2X7R is expressed on both glioma cells and microglia within the glioma microenvironment. It is hypothesized that P2X7R contributes to tumour growth and proliferation via immune-mediated mechanisms involving tumour cells and surrounding microglia. We sought to elucidate the role of P2X7R in a human glioblastoma cell line (U251) and on surgically resected human glioma samples. We treated U251 and human glioma cultures for 72 h with P2X7R antagonists, Brilliant Blue G (BBG), oxidized ATP (oATP) and AZ10606120. Cell counting via fluorescence confocal microscopy was conducted to assess tumour proliferation. We observed no significant reductions in tumour cell numbers following P2X7R antagonism with BBG (20 μM) and oATP (250 μM) in both U251 cells and human glioma samples. Interestingly, there was a significant reduction in tumour cell number in both U251 cells (p = 0.0156) and human glioma samples (p = 0.0476) treated with varying concentrations of AZ10606120. When compared with the conventional chemotherapeutic agent, temozolomide, AZ10606120 was also found to more effectively inhibit tumour proliferation in U251 cells (p < 0.0001). Our pilot results demonstrate a potential trophic role of P2X7R where its inhibition by AZ10606120, a potent antagonist, hinders glioma growth directly or through the inactivation of microglia. This sheds new light on P2X7R as a therapeutic target for human gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BBG:

Brilliant Blue G

bzATP:

2’3’-O-(4-benzoylbenzoyl)-ATP

DMEM:

Dulbecco’s Modified Eagle’s Medium

EBSS:

Earle’s Balanced Salt Solution

FBS:

Foetal bovine serum

MEM:

Minimum Essential Medium

NEAA:

Non-essential amino acids

oATP:

Oxidized ATP

P2X7R:

P2X7 receptor

PBS:

Phosphate buffered saline

PDL:

Poly-D-lysine hydrobromide

References

  1. Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee SU (2017) Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev 18(1):3–9

    PubMed  PubMed Central  Google Scholar 

  2. Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ (2010) Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA-Cancer J Clin 60(3):166–193

    PubMed  PubMed Central  Google Scholar 

  3. Gladson CL, Prayson RA, Liu WM (2010) The pathobiology of glioma tumors. Annu Rev Pathol 5:33–50

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Monif M, O’Brien TJ, Drummond KJ, Reid CA, Liubinas SV, Williams DA (2014) P2X7 receptors are a potential novel target for anti-glioma therapies. J Inflamm 11(1):25

    Google Scholar 

  5. Fang J, Chen X, Zhang L, Chen J, Liang Y, Li X, Xiang J, Wang L, Guo G, Zhang B, Zhang W (2013) P2X7R suppression promotes glioma growth through epidermal growth factor receptor signal pathway. Int J Biochem Cell Biol 45(6):1109–1120

    CAS  PubMed  Google Scholar 

  6. Tamajusuku AS, Villodre ES, Paulus R et al (2010) Characterization of ATP-induced cell death in the GL261 mouse glioma. J Cell Biochem 109(5):983–991

    CAS  PubMed  Google Scholar 

  7. Ryu JK, Jantaratnotai N, Serrano-Perez MC, McGeer PL, McLarnon JG (2011) Block of purinergic P2X7R inhibits tumor growth in a C6 glioma brain tumor animal model. J Neuropathol Exp Neurol 70(1):13–22

    CAS  PubMed  Google Scholar 

  8. Fang KM, Wang YL, Huang MC, Sun SH, Cheng H, Tzeng SF (2011) Expression of macrophage inflammatory protein-1alpha and monocyte chemoattractant protein-1 in glioma-infiltrating microglia: involvement of ATP and P2X7 receptor. J Neurosci Res 89(2):199–211

    CAS  PubMed  Google Scholar 

  9. Bergamin LS, Braganhol E, Figueiro F et al (2015) Involvement of purinergic system in the release of cytokines by macrophages exposed to glioma-conditioned medium. J Cell Biochem 116(5):721–729

    CAS  PubMed  Google Scholar 

  10. Ji Z, Xie Y, Guan Y, Zhang Y et al (2018) Involvement of P2X7 receptor in proliferation and migration of human glioma cells. Biomed Res Int 2018:8591397

    PubMed  PubMed Central  Google Scholar 

  11. Wei W, Ryu JK, Choi HB, McLarnon JG (2008) Expression and function of the P2X(7) receptor in rat C6 glioma cells. Cancer Lett 260(1–2):79–87

    CAS  PubMed  Google Scholar 

  12. White N, Butler PE, Burnstock G (2005) Human melanomas express functional P2 X(7) receptors. Cell Tissue Res 321(3):411–418

    CAS  PubMed  Google Scholar 

  13. Li X, Zhou L, Feng YH, Abdul-Karim FW, Gorodeski GI (2006) The P2X7 receptor: a novel biomarker of uterine epithelial cancers. Cancer Epidemiol Biomark Prev 15(10):1906–1913

    CAS  Google Scholar 

  14. Zhang X, Meng L, He B, Chen J, Liu P, Zhao J, Zhang Y, Li M, An D (2009) The role of P2X7 receptor in ATP-mediated human leukemia cell death: calcium influx-independent. Acta Biochim Biophys Sin Shanghai 41(5):362–369

    PubMed  Google Scholar 

  15. Boldrini L, Giordano M, Ali G et al (2014) P2X7 protein expression and polymorphism in non-small cell lung cancer (NSCLC). J Negat Results Biomed 13:16

    PubMed  PubMed Central  Google Scholar 

  16. Burnstock G, Knight GE (2018) The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour progression. Purinergic Signal 14(1):1–18

    CAS  PubMed  Google Scholar 

  17. Monif M, Reid CA, Powell KL, Smart ML, Williams DA (2009) The P2X7 receptor drives microglial activation and proliferation: a trophic role for P2X7R pore. J Neurosci 29(12):3781–3791

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Restrepo A, Smith CA, Agnihotri S, Shekarforoush M, Kongkham PN, Seol HJ, Northcott P, Rutka JT (2011) Epigenetic regulation of glial fibrillary acidic protein by DNA methylation in human malignant gliomas. Neuro-Oncology 13(1):42–50

    CAS  PubMed  Google Scholar 

  19. Mondal S, Dirks P, Rutka JT (2010) Immunolocalization of fascin, an actin-bundling protein and glial fibrillary acidic protein in human astrocytoma cells. Brain Pathol 20(1):190–199

    CAS  PubMed  Google Scholar 

  20. Allsopp RC, Dayl S, Schmid R, Evans RJ (2017) Unique residues in the ATP gated human P2X7 receptor define a novel allosteric binding pocket for the selective antagonist AZ10606120. Sci. 7(1):725

    Google Scholar 

  21. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups, National Cancer Institute of Canada Clinical Trials Group (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    CAS  PubMed  Google Scholar 

  22. Coniglio SJ, Segall JE (2013) Review: molecular mechanism of microglia stimulated glioblastoma invasion. Matrix Biol 32(7):372–380

    CAS  PubMed  Google Scholar 

  23. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507

    CAS  PubMed  Google Scholar 

  24. Nduom EK, Weller M, Heimberger AB (2015) Immunosuppressive mechanisms in glioblastoma. Neuro Oncol 17(suppl_7):vii9–vii14

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Monif M, Reid CA, Powell KL, Drummond KJ, O'Brien TJ, Williams DA (2016) Interleukin-1beta has trophic effects in microglia and its release is mediated by P2X7R pore. J Neuroinflamm 13(1):173

    Google Scholar 

  26. Komohara Y, Ohnishi K, Kuratsu J, Takeya M (2008) Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol 216(1):15–24

    CAS  PubMed  Google Scholar 

  27. Hussain SF, Yang D, Suki D, Aldape K, Grimm E, Heimberger AB (2006) The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro-Oncology 8(3):261–279

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Butovsky O, Jedrychowski MP, Moore CS et al (2013) Identification of a unique TGF-β–dependent molecular and functional signature in microglia. Nat Neurosci 17:131

    PubMed  PubMed Central  Google Scholar 

  29. Solini A, Cuccato S, Ferrari D, Santini E, Gulinelli S, Callegari MG, Dardano A, Faviana P, Madec S, di Virgilio F, Monzani F (2008) Increased P2X7 receptor expression and function in thyroid papillary cancer: a new potential marker of the disease? Endocrinology. 149(1):389–396

    CAS  PubMed  Google Scholar 

  30. Giannuzzo A, Pedersen SF, Novak I (2015) The P2X7 receptor regulates cell survival, migration and invasion of pancreatic ductal adenocarcinoma cells. Mol Cancer 14:203

    PubMed  PubMed Central  Google Scholar 

  31. Zhang XJ, Zheng GG, Ma XT, Yang YH, Li G, Rao Q, Nie K, Wu KF (2004) Expression of P2X7 in human hematopoietic cell lines and leukemia patients. Leuk Res 28(12):1313–1322

    CAS  PubMed  Google Scholar 

  32. McLarnon JG (2017) Roles of purinergic P2X7 receptor in glioma and microglia in brain tumors. Cancer Lett 402:93–99

    CAS  Google Scholar 

  33. Fang J, Chen X, Wang S, Xie T, du X, Liu H, Wang S, Li X, Chen J, Zhang B, Liang H, Yang Y, Zhang W (2015) The expression of P2X7 receptors in EPCs and their potential role in the targeting of EPCs to brain gliomas. Cancer Biol Ther 16(4):498–510

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Giannuzzo A, Saccomano M, Napp J, Ellegaard M, Alves F, Novak I (2016) Targeting of the P2X7 receptor in pancreatic cancer and stellate cells. Int J Cancer 139(11):2540–2552

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Adinolfi E, Raffaghello L, Giuliani AL, Cavazzini L, Capece M, Chiozzi P, Bianchi G, Kroemer G, Pistoia V, di Virgilio F (2012) Expression of P2X7 receptor increases in vivo tumor growth. Cancer Res 72(12):2957–2969

    CAS  PubMed  Google Scholar 

  36. Quail DF, Joyce JA (2017) The microenvironmental landscape of brain tumors. Cancer Cell 31(3):326–341

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiang LH, Mackenzie AB, North RA, Surprenant A (2000) Brilliant blue G selectively blocks ATP-gated rat P2X(7) receptors. Mol Pharmacol 58:82–88

    CAS  PubMed  Google Scholar 

  38. Nemeth ZH, Csoka B, Spolarics Z, DiFazio LT, Rolandelli RH, Hasko G (2017) Extracellular adenosine triphosphate protects against sepsis by enhancing the intracellular killing of bacteria. J Am Coll Surg 225(4):e15

    Google Scholar 

  39. Di Virgilio F (2003) Novel data point to a broader mechanism of action of oxidized ATP: the P2X7 receptor is not the only target. Br J Pharmacol 140(3):441–443

    PubMed  PubMed Central  Google Scholar 

  40. Bickel M (1993) The role of interleukin-8 in inflammation and mechanisms of regulation. J Periodontol 64(5 Suppl):456–460

    CAS  PubMed  Google Scholar 

  41. Fossati G, Ricevuti G, Edwards SW, Walker C, Dalton A, Rossi ML (1999) Neutrophil infiltration into human gliomas. Acta Neuropathol 98(4):349–354

    CAS  PubMed  Google Scholar 

Download references

Funding

Brain Foundation Australia

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mastura Monif.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, L.K., Seneviratne, S., Drummond, K.J. et al. P2X7 receptor antagonism inhibits tumour growth in human high-grade gliomas. Purinergic Signalling 16, 327–336 (2020). https://doi.org/10.1007/s11302-020-09705-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-020-09705-2

Keywords

Navigation