Skip to main content
Log in

Plasma-Based Artificial Magnetic Conductor for Polarization Reconfigurable Dielectric Resonator Antenna

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Polarization reconfigurable dielectric resonator antenna (DRA) backed by plasma artificial magnetic conductor (AMC) ground plane is designed and optimized for 10-GHz applications. The AMC unit-cell consists of a metal cylinder with two pairs of cuts filled with a noble gas. According to the ionization degree of gas in the two pair of cuts, three polarization states are obtained. The AMC unit-cell operates at 10 GHz with ± 90° bandwidth of 26% and axial ratio (AR) bandwidth span from 9.3 to 10.25 GHz. A linearly polarized (LP) cylindrical DRA backed by 4 × 4 AMC ground plane is investigated. A wide impedance bandwidth of 20%, peak gain 7.8 dBi, and AR < 3 dB of 3.2% are achieved. A parametric study on the AMC unit-cell dimensions is presented. The DRA loaded with optimized AMC unit-cells broaden the AR bandwidth from 9.6 to 10.7 GHz (11%). A 13 × 13 unit-cell perforated dielectric reflectarray loading the DRA is used to increase the total gain. A peak gain of 19.5 dBi is achieved with reconfigurable polarization states. A sequential cooperate feeding network is used with 2 × 2 DRA backed by 8 × 8 AMC unit-cells to improve the gain and CP bandwidth. Two chessboard square and triangle arrangements of AMC unit-cells are investigated. The square arrangement improves AR bandwidth to 2.4 GHz, gain to 13.3 dBi, and side lobe level (SLL) below the main beam to − 12.3 dB. Full-wave simulation is used to study and optimize the proposed structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Gao SS, Luo Q, Zhu F (2014) Circularly polarized antennas. John Wiley and Sons, Ltd., United Kingdom

    Book  Google Scholar 

  2. Mittra R (2019) Developments in antenna analysis and design. The Institution of Engineering and Technology, United Kingdom

    Google Scholar 

  3. Kishk AA (Sept. 2003) Performance of planar four element array of single fed circularly polarized dielectric resonator antenna. Microw Opt Technol Lett 38(5):381–384

    Article  Google Scholar 

  4. Mongia R, Ittipiboon A, Cuhaci M, Roscoe D (1994) Circularly polarized dielectric resonator antenna. Electron Lett 30:1361–1362

    Article  Google Scholar 

  5. Li F, Chen H, He Q, Zhou Y, Zhang L, Weng X, Deng L (2019) Design and implementation of metamaterial polarization converter with the reflection and transmission polarization conversion simultaneously. J Opt 21(4):045102

    Article  CAS  Google Scholar 

  6. Wang Z, Ge Y, Lin C, Liu K, Pu J (2019) High-efficiency cross and linear-to-circular polarization converters based on novel frequency selective surfaces. Microw Opt Technol Lett 61(10):2410–2419

    Article  Google Scholar 

  7. Yang W, Tam KW, Choi WW, Che W, Hui HT (2014) Novel polarization rotation technique based on an artificial magnetic conductor and its application in a low-profile circular polarization antenna. IEEE Trans Antennas Propag 62(12):6206–6216

    Article  Google Scholar 

  8. Feresidis AP, Goussetis G, Wang S, Vardaxoglou JC (2005) Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas. IEEE Trans Antennas Propag 53(1):209–215

    Article  Google Scholar 

  9. De Cos ME, Las-Heras F (2015) On the advantages of loop-based unit-cell’s metallization regarding the angular stability of artificial magnetic conductors. Appl Phys A 118(2):699–708

    Article  CAS  Google Scholar 

  10. Ta SX, Ho QS, Nguyen KK, Dao-Ngoc C (2018) Single-dipole antenna on a metasurface for broadband circularly polarized radiation. J Electron Waves Appl 32(4):413–427

    Article  Google Scholar 

  11. Ta SX, Park I (2016) Planar wideband circularly polarized metasurface-based antenna array. J Electron Appl 30(12):1620–1630

    Google Scholar 

  12. Yu H, Cao X, Gao J, Yang H, Jidi L, Han J, Li T (2018) Design of a wideband and reconfigurable polarization converter using a manipulable metasurface. Opt Mater Express 8(11):3373–3381

    Article  Google Scholar 

  13. Tian J, Cao X, Gao J, Yang H, Han J, Yu H, Li T (2019) A reconfigurable ultra-wideband polarization converter based on metasurface incorporated with PIN diodes. J Appl Phys 125(13):135105

    Article  CAS  Google Scholar 

  14. Doumanis E, Goussetis G, Dickie R, Cahill R, Baine P, Bain M, Toso G (2014) Electronically reconfigurable liquid crystal based mm-wave polarization converter. IEEE Trans Antennas Propag 62(4):2302–2307

    Article  Google Scholar 

  15. Zainud-Deen SH, Malhat HA (2019) Electronic beam switching of circularly polarized plasma magneto-electric dipole array with multiple beams. Plasmonics 14(4):881–890

    Article  Google Scholar 

  16. Zainud-Deen SH, Malhat HA, El-shalaby NA, Gaber SM (2019) Circular polarization bandwidth reconfigurable high gain planar plasma helical antenna. IEEE Trans Plasma Sci

  17. Zainud-Deen SH, Badaway MM, Malhat HA (2019) Dielectric resonator antenna loaded with reconfigurable plasma metamaterial polarization converter. Plasmonics

  18. Malhat HA, Zainud-Deen SH, Badawy MM, Awadalla KH (2015) Dual-mode plasma reflectarray/transmitarray antennas. IEEE Trans Plasma Sci 43(9):3582–3589

    Article  CAS  Google Scholar 

  19. Davidson DB (2010) Computational electromagnetics for RF and microwave engineering. Cambridge University Press

  20. Zheng Q, Guo C, Li H, Ding J (2018) Broadband radar cross-section reduction using polarization conversion metasurface. Int J Microw Wirel Technol 10(2):197–206

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hend Abd El-Azem Malhat.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malhat, H.A.EA., Zainud-Deen, S.H. Plasma-Based Artificial Magnetic Conductor for Polarization Reconfigurable Dielectric Resonator Antenna. Plasmonics 15, 1913–1924 (2020). https://doi.org/10.1007/s11468-020-01189-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01189-5

Keywords

Navigation