Skip to main content
Log in

MicroRNA comparison between poplar and larch provides insight into the different mechanism of wood formation

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

MiRNA transcriptome analysis of different tissues in poplar and larch suggests variant roles of miRNAs in regulating wood formation between two kinds of phyla.

Abstract

Poplar and larch belong to two different phyla. Both are ecological woody species and major resources for wood-related industrial applications. However, wood properties are different between these two species and the molecular basis is largely unknown. In this study, we performed high-throughput sequencing of microRNAs (miRNAs) in the three tissues, xylem, phloem and leaf of Populus alba × Populus glandulosa and Larix kaempferi. Differentially expressed miRNA (DEmiRNA) analysis identified 85 xylem-specific miRNAs in P. alba × P. glandulosa and 158 xylem-specific miRNAs in L. kaempferi. Among 36 common miRNAs, 12 were conserved between the two species. GO and KEGG analyses of the miRNA target genes showed similar metabolism in two species. Through KEGG and BLASTN, we predicted target genes of xylem differentially expressed (DEmiRNA) in the wood formation-related pathways and located DEmiRNAs in these pathways. A network was built for wood formation-related DEmiRNAs, their target genes and orthologous genes in Arabidopsis thaliana. Comparison of DEmiRNA and target gene annotation between P. alba × P. glandulosa and L. kaempferi suggested the different functions of DEmiRNAs and divergent mechanism in wood formation between two species, providing knowledge to understand wood formation mechanism in gymnosperm and angiosperm woody plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allen RS, Li JY, Stahle MI, Dubroué A, Gubler F, Millar AA (2007) Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci USA 104:16371–16376. https://doi.org/10.1073/pnas.0707653104

    Article  PubMed  Google Scholar 

  • Alonso-Peral MM, Li JY, Li YJ, Allen RS, Schnippenkoetter W, Ohms S, White RG, Millar AA (2010) The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol 154:757–771. https://doi.org/10.1104/pp.110.160630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki K, Ogata Y, Shibata D (2007) Approaches for extracting practical information from gene co-expression networks in plant biology. Plant Cell Physiol 48:381–390

    Article  CAS  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant cell 15:2730–2741

    Article  CAS  Google Scholar 

  • Bo XC, Wang SQ (2005) TargetFinder: a software for antisense oligonucleotide target site selection based on MAST and secondary structures of target Mrna. Bioinformatics 21:1401–1402

    Article  CAS  Google Scholar 

  • Bradshaw HD Jr., Villar M, Watson BD, Otto KG, Stewart S, Stettler RF (1994) Molecular genetics of growth and development in Populus. III. A genetic linkage map of a hybrid poplar composed of RFLP, STS, and RAPD markers TAG. Theor Appl Genet Theoretische und angewandte Genetik 89:167–178. https://doi.org/10.1007/BF00225137

    Article  CAS  PubMed  Google Scholar 

  • Brown DM, Zeef LA, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17:2281–2295. https://doi.org/10.1105/tpc.105.031542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XM (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  CAS  Google Scholar 

  • Chen XM (2005) MicroRNA biogenesis and function in plants. FEBS Lett 579:5923–5931. https://doi.org/10.1016/j.febslet.2005.07.071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Souza A, Hull PA, Gille S, Pauly M (2014) Identification and functional characterization of the distinct plant pectin esterases PAE8 and PAE9 and their deletion mutants. Planta 240:1123–1138

    Article  Google Scholar 

  • DiLeo MV, Strahan GD, den Bakker M, Hoekenga OA (2011) Weighted correlation network analysis (WGCNA) applied to the tomato fruit metabolome. PLoS ONE 6:e26683

    Article  CAS  Google Scholar 

  • Du Q, Avci U, Li SB, Gallego-Giraldo L, Pattathil S, Qi LY, Hahn MG, Wang HZ (2015) Activation of miR165b represses AtHB15 expression and induces pith secondary wall development in Arabidopsis. Plant J Cell Mol Biol 83:388–400. https://doi.org/10.1111/tpj.12897

    Article  CAS  Google Scholar 

  • Ellis C, Turner JG (2001) The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant cell 13:1025–1033

    Article  CAS  Google Scholar 

  • Fernández-Pérez F, Vivar T, Pomar F, Pedreño MA, Novo-Uzal E (2015) Peroxidase 4 is involved in syringyl lignin formation in Arabidopsis thaliana. J Plant Physiol 175:86–94

    Article  Google Scholar 

  • Grad Y, Aach J, Hayes GD, Reinhart BJ, Church GM, Ruvkun G, Kim J (2003) Computational and experimental identification of C. elegans microRNAs. Mol Cell 11:1253–1263

    Article  CAS  Google Scholar 

  • Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. Plant cell 17:1376–1386. https://doi.org/10.1105/tpc.105.030841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo K, Xia K, Yang ZM (2008) Regulation of tomato lateral root development by carbon monoxide and involvement in auxin and nitric oxide. J Exp Bot 59:3443–3452. https://doi.org/10.1093/jxb/ern194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He F, Xu C, Fu X, Shen Y, Guo L, Leng M, Luo K (2018) The MicroRNA390/trans-acting short interfering RNA3 module mediates lateral root growth under salt stress via the auxin pathway. Plant Physiol 177:775–791

    Article  CAS  Google Scholar 

  • Hefer CA, Mizrachi E, Myburg AA, Douglas CJ, Mansfield SD (2015) Comparative interrogation of the developing xylem transcriptomes of two wood-forming species: Populus trichocarpa and Eucalyptus grandis. New Phytol 206:1391–1405. https://doi.org/10.1111/nph.13277

    Article  CAS  PubMed  Google Scholar 

  • Hinckley, TM, Ceulemans, R, Dunlap, JM et al (1989) Physiological, morphological and anatomical components of hybrid vigor in Populus. Structural & functional responses to environmental stresses: water shortage XIV international botanical congress

  • Horvath S, Dong J (2008) Geometric interpretation of gene coexpression network analysis. PLoS Comput Biol 4:e1000117

    Article  Google Scholar 

  • Huang JH, Qi YP, Wen SX, Guo P, Chen XM, Chen LS (2016) Illumina microRNA profiles reveal the involvement of miR397a in citrus adaptation to long-term boron toxicity via modulating secondary cell-wall biosynthesis. Sci Rep 6:22900. https://doi.org/10.1038/srep22900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin D, Wang Y, Zhao Y, Chen M (2013) MicroRNAs and their cross-talks in plant development. J Genet Genomics 40:161–170

    Article  CAS  Google Scholar 

  • Jo A, Im J, Lee HE, Jang DM, Nam GH, Mishra A, Kim WJ, Kim W, Cha HJ, Kim HS (2017) Evolutionary conservation and expression of miR-10a-3p in olive flounder and rock bream. Gene 628:16–23. https://doi.org/10.1016/j.gene.2017.07.020

    Article  CAS  PubMed  Google Scholar 

  • Ko JH, Prassinos C, Han KH (2006) Developmental and seasonal expression of PtaHB1, a Populus gene encoding a class III HD-Zip protein, is closely associated with secondary growth and inversely correlated with the level of microRNA (miR166). New Phytol 169:469–478. https://doi.org/10.1111/j.1469-8137.2005.01623.x

    Article  CAS  PubMed  Google Scholar 

  • Kraft E, Stone SL, Ma LG, Su N, Gao Y, Lau OS, Deng XW, Callis J (2005) Genome analysis and functional characterization of the E2 and RING-type E3 ligase ubiquitination enzymes of Arabidopsis. Plant Physiol 139:1597–1611

    Article  CAS  Google Scholar 

  • Lamoureux CH (1975) Phloem tissue in angiosperms and gymnosperms. Phloem transport. Springer, Berlin, pp 1–31

    Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559

    Article  Google Scholar 

  • Larue CT, Wen J, Walker JC (2009) A microRNA-transcription factor module regulates lateral organ size and patterning in Arabidopsis. Plant J 58:450–463. https://doi.org/10.1111/j.1365-313X.2009.03796.x

    Article  CAS  PubMed  Google Scholar 

  • Li H, Xu L, Wang H, Yuan Z, Cao XF, Yang ZN, Zhang DB, Xu YQ, Huang H (2005) The Putative RNA-dependent RNA polymerase RDR6 acts synergistically with ASYMMETRIC LEAVES1 and 2 to repress BREVIPEDICELLUS and microRNA165/166 in Arabidopsis leaf development. Plant Cell 17:2157–2171. https://doi.org/10.1105/tpc.105.033449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Qin Y, Duan H, Yin W, Xia X (2011) Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. J Exp Bot 62:3765–3779. https://doi.org/10.1093/jxb/err051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Duan H, Li J, Deng XW, Yin W, Xia X (2013) Global identification of miRNAs and targets in Populus euphratica under salt stress. Plant Mol Biol 81:525–539. https://doi.org/10.1007/s11103-013-0010-y

    Article  CAS  PubMed  Google Scholar 

  • Li L, Yi H, Xue M, Yi M (2017) miR398 and miR395 are involved in response to SO2 stress in Arabidopsis thaliana. Ecotoxicology 26:1181–1187. https://doi.org/10.1007/s10646-017-1843-y

    Article  CAS  PubMed  Google Scholar 

  • Liang G, Yang F, Yu D (2010) MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J 62:1046–1057

    CAS  PubMed  Google Scholar 

  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  CAS  Google Scholar 

  • Liu XL, Liu LF, Niu QK, Xia C, Yang KZ, Li R, Chen LQ, Zhang XQ, Zhou YH, Ye D (2011) Male gametophyte defective 4 encodes a rhamnogalacturonan II xylosyltransferase and is important for growth of pollen tubes and roots in Arabidopsis. Plant J 65:647–660

    Article  CAS  Google Scholar 

  • Lorenz WW, Yu YS, Dean JF (2010) An improved method of RNA isolation from loblolly pine (P. taeda L.) and other conifer species JoVE. J Vis Exp 22:1751

    Google Scholar 

  • Lorrain S, Lin BQ, Auriac MC, Kroj T, Saindrenan P, Nicole M, Balagué C, Roby D (2004) VASCULAR ASSOCIATED DEATH1, a Novel GRAM domain–containing protein, is a regulator of cell death and defense responses in vascular tissues. Plant Cell 16(8):2217–2232

    Article  CAS  Google Scholar 

  • Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress–responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant cell 17:2186–2203

    Article  CAS  Google Scholar 

  • Lu S, Sun YH, Amerson H, Chiang VL (2007) MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J 51:1077–1098. https://doi.org/10.1111/j.1365-313X.2007.03208.x

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55(1):131–151. https://doi.org/10.1111/j.1365-313X.2008.03497.x

    Article  CAS  PubMed  Google Scholar 

  • Lu SF, Li QZ, Wei HR, Chang MJ, Tunlaya-Anukit S, Kim H, Liu J, Song JY, Sun YH, Yuan LC, Yeh TF, Peszlen I, Ralph J, Sederoff RR, Chiang VL (2013) Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc Natl Acad Sci 110:10848–10853

    Article  CAS  Google Scholar 

  • Lu Y, Deng SR, Li ZR, Wu JT, Liu QF, Liu WZ, Yu WJ, Zhang YH, Shi WG, Zhou J, Li H, Polle A, Luo ZB (2019) Competing endogenous RNA networks underlying anatomical and physiological characteristics of poplar wood in acclimation to low nitrogen availability. Plant Cell Physiol 60:2478–2495

    Article  CAS  Google Scholar 

  • Mizuno S, Osakabe Y, Maruyama K, Ito T, Osakabe K, Sato T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana. Plant J 50:751–766

    Article  CAS  Google Scholar 

  • Nodine MD, Yadegari R, Tax FE (2007) RPK1 and TOAD2 are two receptor-like kinases redundantly required for arabidopsis embryonic pattern formation. Dev Cell 12:943–956. https://doi.org/10.1016/j.devcel.2007.04.003

    Article  CAS  PubMed  Google Scholar 

  • Oliveri P, Tu Q, Davidson EH (2008) Global regulatory logic for specification of an embryonic cell lineage. Proc Natl Acad Sci 105:5955–5962

    Article  CAS  Google Scholar 

  • Parker G, Schofield R, Sundberg B, Turner S (2003) Isolation of COV1, a gene involved in the regulation of vascular patterning in the stem of Arabidopsis. Development 130:2139–2148. https://doi.org/10.1242/dev.00441

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Andrew M, Owen O, Nitin SB, Jonathan TW, Daniel R, Nada A, Benno S, Trey I (2013) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Google Scholar 

  • Pavy N, Pelgas B, Laroche J, Rigault P, Isabel N, Bousquet J (2012) A spruce gene map infers ancient plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers. BMC Biol 10:84

    Article  CAS  Google Scholar 

  • Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, Khitrov N, Auer M, Somerville CR (2007) Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci USA 104:15566–15571. https://doi.org/10.1073/pnas.0706592104

    Article  PubMed  Google Scholar 

  • Ramachandran P, Carlsbecker A, Etchells JP (2016) Class III HD-ZIPs govern vascular cell fate: an HD view on patterning and differentiation. J Exp Bot 68:55–69

    Article  Google Scholar 

  • Reinhardt D (2003) Vascular patterning: more than just auxin? Curr Biol 13:R485–R487

    Article  CAS  Google Scholar 

  • Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49:592–606

    Article  CAS  Google Scholar 

  • Schmidt WC (1995) Ecology and management of Larix forests: a look ahead: proceedings of an international symposium. 319:6–18

  • Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P (2008) The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol 67:183–195. https://doi.org/10.1007/s11103-008-9310-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo CH, Kim JR, Kim MS, Cho KH (2009) Hub genes with positive feedbacks function as master switches in developmental gene regulatory networks. Bioinformatics 25:1898–1904. https://doi.org/10.1093/bioinformatics/btp316

    Article  CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  Google Scholar 

  • Shen B, Li C, Tarczynski MC (2002) High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-l-methionine synthetase 3 gene. Plant J 29:371–380

    Article  CAS  Google Scholar 

  • Stathopoulos A, Levine M (2005) Genomic regulatory networks and animal development. Dev Cell 9:449–462

    Article  CAS  Google Scholar 

  • Sun X, Wang CD, Xiang N, Li X, Yang SH, Du JC, Yang YP, YangY Q (2017) Activation of secondary cell wall biosynthesis by miR319-targeted TCP4 transcription factor. Plant Biotechnol J 15:1284–1294. https://doi.org/10.1111/pbi.12715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63

    Article  CAS  Google Scholar 

  • Tang F, Wei H, Zhao S, Wang L, Zheng H, Lu M (2016) Identification of microRNAs involved in regeneration of the secondary vascular system in Populus tomentosa Carr. Front Plant Sci 7:724. https://doi.org/10.3389/fpls.2016.00724

    Article  PubMed  PubMed Central  Google Scholar 

  • Ursache R, Miyashima S, Chen QG, Vatén A, Nakajima K, Carlsbecker A, Zhao YD, Helariutta Y, Dettmer J (2014) Tryptophan-dependent auxin biosynthesis is required for HD-ZIP III-mediated xylem patterning. Development 141:1250–1259

    Article  CAS  Google Scholar 

  • Vidaurre DP, Ploense S, Krogan NT, Berleth T (2007) AMP1 and MP antagonistically regulate embryo and meristem development in Arabidopsis. Development 134(14):2561–2567

    Article  CAS  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687. https://doi.org/10.1016/j.cell.2009.01.046

    Article  CAS  PubMed  Google Scholar 

  • Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216. https://doi.org/10.1105/tpc.105.033076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei H, Yordanov YS, Georgieva T, Li X, Busov V (2013) Nitrogen deprivation promotes Populus root growth through global transcriptome reprogramming and activation of hierarchical genetic networks. New Phytol 200:483–497. https://doi.org/10.1111/nph.12375

    Article  CAS  PubMed  Google Scholar 

  • Wu HJ, Ma YK, Tong C, Meng W, Wang XJ (2012) PsRobot: a web-based plant small RNA meta-analysis toolbox. Nucl Acids Res 40:W22–W28

    Article  CAS  Google Scholar 

  • Yang C, Xu Z, Song J, Conner K, Vizcay Barrena G, Wilson ZA (2007) Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. Plant cell 19:534–548. https://doi.org/10.1105/tpc.106.046391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao JL, Tomes S, Xu J, Gleave AP (2016) How microRNA172 affects fruit growth in different species is dependent on fruit type. Plant Signal Behav 11:e1156833. https://doi.org/10.1080/15592324.2016.1156833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14

    Article  Google Scholar 

  • Zhang YQ, Nasser V, Pisanty O, Omary M, Wulff N, Donato MD, Tal I, Hauser F, Hao PC, Roth O, Fromm H, Schroeder JI, Geisler M, Nour-Eldin HH, Shani E (2018a) A transportome-scale amiRNA-based screen identifies redundant roles of Arabidopsis ABCB6 and ABCB20 in auxin transport. Nat Commun 9:4204. https://doi.org/10.1038/s41467-018-06410-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Yun Z, Gong L, Qu H, Duan X, Jiang Y, Zhu H (2018b) Comparison of miRNA evolution and function in plants and animals. Microrna 7:4–10

    Article  CAS  Google Scholar 

  • Zhang FJ, Zhang Y, Lv XL, Xu BY, Zhang HD, Yan J, Li HP, Wu LG (2019) Evolution of an X-linked miRNA family predominantly expressed in mammalian male germ. Cells Mol Biol Evol 36:663–678. https://doi.org/10.1093/molbev/msz001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant CAFYBB2017ZY001 from Fundamental Research Funds of the Chinese Academy of Forestry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinren Dai or Zaizhi Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

BioProject ID

PRJNA590621.

Additional information

Communicated by Maike Petersen .

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Huang, X., Li, W. et al. MicroRNA comparison between poplar and larch provides insight into the different mechanism of wood formation. Plant Cell Rep 39, 1199–1217 (2020). https://doi.org/10.1007/s00299-020-02559-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-020-02559-3

Keywords

Navigation