Skip to main content
Log in

Effect of Y Additions on the Oxidation Behaviour of Novel Refractory High-Entropy Alloy NbMoCrTiAl at 1000 °C in Air

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

In this work, the influence of 0.5 at.% and 1 at.% Y additions on the high-temperature oxidation resistance of the equiatomic alloy NbMoCrTiAl at 1000 °C in air was investigated. Continuous isothermal and cyclic thermogravimetric experiments were conducted to characterize the oxidation kinetics of the alloys. Various analytical methods such as X-ray diffraction and electron microscopy with energy-dispersive X-ray spectroscopy were used to study the growth, morphology and composition of the oxide scales. It was found that the Y additions led to the formation of Al2Y phase along grain boundaries. The isothermal oxidation experiments of both Y-containing alloys showed lower oxidation rates after a short period of transient oxidation probably due to a reduction of fast-growing and voluminous Nb2O5 oxides within the oxide layer. During the steady-state period, however, oxidation of Al2Y caused local stresses resulting in crack formation and subsequent breakaway oxidation, i.e. pronounce increase in the oxidation rates. The cyclic oxidation experiments revealed lower oxidation rates and thinner, more adherent oxide scales formed on the alloy NbMoCrTiAl1Y compared to NbMoCrTiAl. The increased scale adherence was attributed to the formation of pegs due to the oxidation of Al2Y phase at the oxide/metal interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.-W. Yeh, S.-K. Chen, S.-J. Lin, et al., Advanced Engineering Materials6, 2004 (299).

    CAS  Google Scholar 

  2. J. W. Yeh, Y. L. Chen, S. J. Lin and S. K. Chen, MSF560, 2007 (1).

    CAS  Google Scholar 

  3. O. N. Senkov, C. Woodward and D. B. Miracle, JOM Journal of the Minerals Metals and Materials Society66, 2014 (2030).

    CAS  Google Scholar 

  4. O. N. Senkov, S. V. Senkova, D. M. Dimiduk, C. Woodward and D. B. Miracle, Journal Materials Science47, 2012 (6522).

    CAS  Google Scholar 

  5. O. N. Senkov, D. B. Miracle, K. J. Chaput and J.-P. Couzinie, Journal of Materials Research33, 2018 (3092).

    CAS  Google Scholar 

  6. O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang and P. K. Liaw, Intermetallics18, 2010 (1758).

    CAS  Google Scholar 

  7. O. N. Senkov, G. B. Wilks, J. M. Scott and D. B. Miracle, Intermetallics19, 2011 (698).

    CAS  Google Scholar 

  8. O. Senkov, D. Isheim, D. Seidman and A. Pilchak, Entropy18, 2016 (102).

    Google Scholar 

  9. J. K. Jensen, B. A. Welk, R. E. A. Williams, et al., Scripta Materialia121, 2016 (1).

    CAS  Google Scholar 

  10. C. M. Liu, H. M. Wang, S. Q. Zhang, H. B. Tang and A. L. Zhang, Journal of Alloys and Compounds583, 2014 (162).

    CAS  Google Scholar 

  11. J. Zheng, X. Hou, X. Wang, Y. Meng, X. Zheng and L. Zheng, International Journal of Refractory Metals & Hard Materials54, 2016 (322).

    CAS  Google Scholar 

  12. D. J. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier, Burlington, 2008).

    Google Scholar 

  13. P. Kofstad, High Temperature Corrosion, (Elsevier Applied Science, London, 1988).

    Google Scholar 

  14. R. Bürgel, H. Jürgen Maier and T. Niendorf, Handbuch Hochtemperatur-Werkstofftechnik, (Vieweg + Teubner, Wiesbaden, 2011).

    Google Scholar 

  15. D. P. Whittle and J. Stringer, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences295, 1980 (309).

    CAS  Google Scholar 

  16. P. Y. Hou, MSF696, 2011 (39).

    CAS  Google Scholar 

  17. D. Naumenko, B. A. Pint and W. J. Quadakkers, Oxidation of Metals86, 2016 (1–43).

    CAS  Google Scholar 

  18. Y. Wu, K. Hagihara and Y. Umakoshi, Intermetallics12, 2004 (519).

    CAS  Google Scholar 

  19. X. Gong, R. R. Chen, H. Z. Fang, et al., Corrosion Science131, 2018 (376).

    CAS  Google Scholar 

  20. L. L. Zhao, G. Y. Li, L. Q. Zhang, et al., Intermetallics18, 2010 (1586).

    CAS  Google Scholar 

  21. L. L. Xiang, L. L. Zhao, Y. L. Wang, L. Q. Zhang and J. P. Lin, Intermetallics27, 2012 (6).

    CAS  Google Scholar 

  22. B. Gorr, F. Mueller, H.-J. Christ, et al., Journal of Alloys and Compounds688, 2016 (468).

    CAS  Google Scholar 

  23. H. Chen, A. Kauffmann, B. Gorr, et al., Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al. Journal of Alloys and Compounds661, 2016 (206).

    CAS  Google Scholar 

  24. H. Chen, A. Kauffmann, S. Seils, et al., Acta Materialia176, 2019 (123).

    CAS  Google Scholar 

  25. F. Müller, B. Gorr, H.-J. Christ, et al., Corrosion Science159, 2019 (108161).

    Google Scholar 

  26. B. Gorr, F. Mueller, H.-J. Christ, et al., in TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings, Materials Society TM, ed. (Springer, Cham, 2018) p. 647.

  27. B. Gorr, F. Müller, M. Azim, et al., Oxidation of Metals88, 2017 (339).

    CAS  Google Scholar 

  28. C. E. Lundin and D. T. Klodt, Journal of the Institute of Metals90, 1962 (341).

    CAS  Google Scholar 

  29. J. J. English, Defense Metals Information Center. Binary and Ternary Phase Diagrams of Columbium, Molybdenum, Tantalum, and Tungsten, (Battelle Memorial Institute, Columbus, Ohio, 1961).

    Google Scholar 

  30. K. Nishiyama, T. Abe, T. Sakaguchi and N. Momozawa, Journal of Alloys and Compounds355, 2003 (103).

    CAS  Google Scholar 

  31. K. S. Thomas and S. K. Varma, Corrosion Science99, 2015 (145).

    CAS  Google Scholar 

  32. S. K. Varma, C. Parga, K. Amato and J. Hernandez, Journal Materials Science45, 2010 (3931).

    CAS  Google Scholar 

  33. T. S. Ercit, Mineralogy and Petrology43, 1991 (217).

    CAS  Google Scholar 

  34. M. P. Arbuzov and V. G. Chupria, Soviet Physics Journal8, 1965 (87).

    Google Scholar 

  35. R. F. Cabral, M. H. Prado da Silva, J. B. de Campos and E. S. Lima, MSF727–728, 2012 (799).

    Google Scholar 

  36. K.-C. Lo, H. Murakami, J.-W. Yeh and A.-C. Yeh, Intermetallics119, 2020 (106711).

    CAS  Google Scholar 

  37. E. A. Gulbransen, K. F. Andrew and F. A. Brassart, Journal of the Electrochemical Society110, 1963 (952).

    CAS  Google Scholar 

  38. M. A. Azim, B. Gorr, H.-J. Christ, M. Heilmaier, U. Koch and M. Engelhard, Oxidation of Metals87, 2017 (89).

    CAS  Google Scholar 

  39. P. Kofstad, P. B. Anderson and O. J. Krudtaa, Journal of the Less Common Metals.3, 1961 (89).

    CAS  Google Scholar 

  40. P. Kofstad and H. Kjollesdal, Transaction Metallurgical Soc. AIME.221, 1961 (285).

    CAS  Google Scholar 

  41. G. A. Greene and C. C. Finfrock, Oxidation of Metals55, 2001 (505).

    CAS  Google Scholar 

  42. C. T. Liu, J. Ma and X. F. Sun, Journal of Alloys and Compounds491, 2010 (522).

    CAS  Google Scholar 

Download references

Acknowledgements

The financial support by the Deutsche Forschungsgemeinschaft (DFG), Grant Nos. GO 2283/2-1, GO 2283/4-1, HE 1872/31-1 and HE 1872/34-1, is gratefully acknowledged. The part of this work was performed at the Micro- and Nanoanalytics Facility (MNaF) of the University of Siegen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Müller.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 23532 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, F., Gorr, B., Christ, HJ. et al. Effect of Y Additions on the Oxidation Behaviour of Novel Refractory High-Entropy Alloy NbMoCrTiAl at 1000 °C in Air. Oxid Met 94, 147–163 (2020). https://doi.org/10.1007/s11085-020-09983-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-09983-6

Keywords

Navigation