Skip to main content

Advertisement

Log in

Genetic dissection of the interactions between semi-dwarfing genes sdw1 and ari-e and their effects on agronomic traits in a barley MAGIC population

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The introduction of semi-dwarf cereal crop varieties in the 1960s enabled extensive increases in global food production. Semi-dwarf barley cultivars have shorter stature and improved stress resistance, grain yield and quality than tall varieties. The major semi-dwarf genes, sdw1 and ari-e, have been widely used in barley breeding programmes worldwide. In this study, we identified a novel sdw1 allele in cv. Lockyer and investigated the effect of sdw1 and ari-e and their interactions on plant height, flowering time and grain yield using a Multi-parent Advanced Generation Inter-cross (MAGIC) population generated from four elite barley cultivars. Allele-specific markers combined with Kompetitive Allele Specific Polymerase Chain Reaction (KASP) assays were used for fast and accurate screening of plants with different allele combinations. The results showed that the novel sdw1 allele from cv. Lockyer had similar effects on plant growth and phenology as the known sdw1.d allele. The two semi-dwarf genes sdw1 and ari-e had an additive effect for plant height with height reductions up to 27 cm. The ari-e gene triggered earlier flowering up to 6 days compared to WT and reduced the delay in flowering time caused by the sdw1 gene. The two semi-dwarf genes boosted grain yields by 20% in the sdw1 plants and up to 28% in plants with the two combined semi-dwarf genes. The results presented will benefit the development of higher-yielding and better-adapted barley cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali MA, Okiror SO, Rasmusson DC (1978) Performance of Semidwarf Barley 1. Crop Sci 18:418–422

    Google Scholar 

  • Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice ‘green revolution’. Breed Sci 52:143–150

    CAS  Google Scholar 

  • Barua UM, Chalmers KJ, Thomas WTB, Hackett CA, Lea V, Jack P, Forster BP, Waugh R, Powell W (1993) Molecular mapping of genes determining height, time to heading, and growth habit in barley (Hordeum vulgare). Genome 36:1080–1087

    PubMed  CAS  Google Scholar 

  • Blázquez MA, Green R, Nilsson O, Sussman MR, Weigel D (1998) Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10:791–800

    PubMed  PubMed Central  Google Scholar 

  • Braumann I, Dockter C, Beier S, Himmelbach A, Lok F, Lundqvist U, Skadhauge B, Stein N, Zakhrabekova S, Zhou R, Hansson M (2018) Mutations in the gene of the Gα subunit of the heterotrimeric G protein are the cause for the brachytic1 semi-dwarf phenotype in barley and applicable for practical breeding. Hereditas 155:10

    PubMed  Google Scholar 

  • Brim CA (1966) A modified pedigree method of selection in soybeans. Crop Sci 6:220–220

    Google Scholar 

  • Bureau of Meteorology (2019) Climate statistics for Australian sites. http://www.bom.gov.au/climate/averages/tables/ca_wa_names.shtml#name_e. Accessed July 1, 2019

  • Chandler PM, Marion-Poll A, Ellis M, Gubler F (2002) Mutants at the Slender1 locus of barley cv Himalaya. Molecular and physiological characterization. Plant Physiol 129:181–190

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chloupek O, Forster BP, Thomas WT (2006) The effect of semi-dwarf genes on root system size in field-grown barley. Theor Appl Genet 112:779–786

    PubMed  CAS  Google Scholar 

  • Chono M, Honda I, Zeniya H, Yoneyama K, Saisho D, Takeda K, Takatsuto S, Hoshino T, Watanabe Y (2003) A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol 133:1209–1219

    PubMed  PubMed Central  CAS  Google Scholar 

  • Crossa J, Gauch H, Zobel RW (1990) Additive main effects and multiplicative interaction analysis of two international maize cultivar trials. Crop Sci 30:493–500

    Google Scholar 

  • De Mendiburu F (2019) Agricolae: statistical procedures for agricultural research. https://cran.r-project.org/web/packages/agricolae/agricolae.pdf. Accessed July 1, 2019

  • Domagalska MA, Sarnowska E, Nagy F, Davis SJ (2010) Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in Arabidopsis thaliana. PLoS One 5:e14012

    PubMed  PubMed Central  Google Scholar 

  • Forster BP (2001) Mutation genetics of salt tolerance in barley: an assessment of Golden Promise and other semi-dwarf mutants. Euphytica 120:317–328

    CAS  Google Scholar 

  • Gupta S, Vassos E, Sznajder B, Fox R, Khoo KHP, Loughman R, Chalmers KJ, Mather DE (2018) A locus on barley chromosome 5H affects adult plant resistance to powdery mildew. Mol Breed 38:103

    PubMed  PubMed Central  Google Scholar 

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9

    PubMed  CAS  Google Scholar 

  • Hellewell KB, Rasmusson DC, Gallo-Meagher M (2000) Enhancing yield of semidwarf barley. Crop Sci 40:352–358

    Google Scholar 

  • Hill CB, Angessa TT, McFawn LA, Wong D, Tibbits J, Zhang XQ, Forrest K, Moody D, Telfer P, Westcott S, Diepeveen D, Xu Y, Tan C, Hayden M, Li C (2019a) Hybridisation-based target enrichment of phenology genes to dissect the genetic basis of yield and adaptation in barley. Plant Biotechnol J 17:932–944

    PubMed  CAS  Google Scholar 

  • Hill CB, Wong D, Tibbits J, Forrest K, Hayden M, Zhang XQ, Westcott S, Angessa TT, Li C (2019b) Targeted enrichment by solution-based hybrid capture to identify genetic sequence variants in barley. Scientific Data 6:12

    PubMed  PubMed Central  Google Scholar 

  • Hisamatsu T, King RW (2008) The nature of floral signals in Arabidopsis. II. Roles for FLOWERING LOCUS T (FT) and gibberellin. J Exp Bot 59:3821–3829

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hothorn T, Bretz F, Wesrfall P (2019) Package “mulcomp”. https://cran.r-project.org/web/packages/multcomp/multcomp.pdf. Accessed August 16, 2019

  • Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497

    PubMed  CAS  Google Scholar 

  • Iwasaki Y, Fujisawa Y, Kato H (2003) Function of heterotrimeric G protein in gibberellin signaling. J Plant Growth Regul 22:126–133

    CAS  Google Scholar 

  • Jia Q, Zhang J, Westcott S, Zhang X-Q, Bellgard M, Lance R, Li C (2009) GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct Integr Genomic 9:255–262

    CAS  Google Scholar 

  • Jia Q, Li C, Shang Y, Zhu J, Hua W, Wang J, Yang J, Zhang G (2015) Molecular characterization and functional analysis of barley semi-dwarf mutant Riso no. 9265. BMC Genomics 16:927

    PubMed  PubMed Central  Google Scholar 

  • Jia Q, Tan C, Wang J, Zhang XQ, Zhu J, Luo H, Yang J, Westcott S, Broughton S, Moody D, Li C (2016) Marker development using SLAF-seq and whole-genome shotgun strategy to fine-map the semi-dwarf gene ari-e in barley. BMC Genomics 17:911

    PubMed  PubMed Central  Google Scholar 

  • Kuczyńska A, Surma M, Adamski T, Mikołajczak K, Krystkowiak K, Ogrodowicz P (2013) Effects of the semi-dwarfing sdw1/denso gene in barley. J Appl Genet 54:381–390

    PubMed  PubMed Central  Google Scholar 

  • Laurie D, Pratchett N, Romero C, Simpson E, Snape J (1993) Assignment of the denso dwarfing gene to the long arm of chromosome 3 (3H) of barley by use of RFLP markers. Plant Breed 111:198–203

    Google Scholar 

  • Levy YY, Dean C (1998) The transition to flowering. Plant Cell 10:1973–1989

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li M et al (2016) Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci 7:377

    PubMed  PubMed Central  Google Scholar 

  • Liu H, Bayer M, Druka A, Russell JR, Hackett CA, Poland J, Ramsay L, Hedley PE, Waugh R (2014) An evaluation of genotyping by sequencing (GBS) to map the Breviaristatum-e (ari-e) locus in cultivated barley. BMC Genomics 15:104

    PubMed  PubMed Central  Google Scholar 

  • Lundström M, Forsberg NE, Heimdahl J, Hagenblad J, Leino MW (2018) Genetic analyses of Scandinavian desiccated, charred and waterlogged remains of barley (Hordeum vulgare L.). J Archaeol Sci Rep 22:11–20

    Google Scholar 

  • Malosetti M, van Eeuwijk FA, Boer MP, Casas AM, Elía M, Moralejo M, Bhat PR, Ramsay L, Molina-Cano JL (2011) Gene and QTL detection in a three-way barley cross under selection by a mixed model with kinship information using SNPs. Theor Appl Genet 122:1605–1616

    PubMed  PubMed Central  Google Scholar 

  • Milach S, Federizzi L (2001) Dwarfing genes in plant improvement. Adv Agron 73:35–63

    CAS  Google Scholar 

  • Monna L et al (2002) Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17

    PubMed  CAS  Google Scholar 

  • Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35:613–623

    PubMed  CAS  Google Scholar 

  • Mutasa-Göttgens E, Hedden P (2009) Gibberellin as a factor in floral regulatory networks. J Exp Bot 60:1979–1989

    PubMed  Google Scholar 

  • Pakniyat H, Handley L, Thomas W, Connolly T, Macaulay M, Caligari P, Forster B (1997) Comparison of shoot dry weight, Na+ content and δ13C values of ari-e and other semi-dwarf barley mutants under salt-stress. Euphytica 94:7–14

    CAS  Google Scholar 

  • Paynter B, Trainor G, Malik R, Curry J, Hansch S (2017) 2018 barley variety sowing guide for Western Australia. Department of Primary Industries and Regional Development of Western Australia, Perth

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’genes encode mutant gibberellin response modulators. Nature 400:256–261

    CAS  Google Scholar 

  • Perfus-Barbeoch L, Jones AM, Assmann SM (2004) Plant heterotrimeric G protein function: insights from Arabidopsis and rice mutants. Curr Opin Plant Biol 7:719–731

    PubMed  CAS  Google Scholar 

  • R Core Team (2019) R: A language and environment for statistical computing. http://www.R-project.org. Accessed 1 July 2019

  • Riboni M, Galbiati M, Tonelli C, Conti L (2013) GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1. Plant Physiol 162:1706–1719

    PubMed  PubMed Central  CAS  Google Scholar 

  • Riboni M, Robustelli Test A, Galbiati M, Tonelli C, Conti L (2016) ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana. J Exp Bot 67:6309–6322

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642–1653

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416:701–702

    PubMed  CAS  Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1),“green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci U S A 99:9043–9048

    PubMed  PubMed Central  CAS  Google Scholar 

  • Teplyakova S, Lebedeva M, Ivanova N, Horeva V, Voytsutskaya N, Kovaleva O, Potokina E (2017) Impact of the 7-bp deletion in HvGA20ox2 gene on agronomic important traits in barley (Hordeum vulgare L.). BMC Plant Biol 17:181

    PubMed  PubMed Central  Google Scholar 

  • Thomas W, Powell W, Wood W (1984) The chromosomal location of the dwarfing gene present in the spring barley variety Golden Promise. Heredity 53:177–183

    Google Scholar 

  • Thomas W, Powell W, Swanston J (1991) The effects of major genes on quantitatively varying characters in barley. 4. The GPert and denso loci and quality characters. Heredity 66:381–389

    Google Scholar 

  • Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M (2000) Rice dwarf mutant d1, which is defective in the α subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci U S A 97:11638–11643

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wendt T, Holme I, Dockter C, Preuß A, Thomas W, Druka A, Waugh R, Hansson M, Braumann I (2016) HvDep1 is a positive regulator of culm elongation and grain size in barley and impacts yield in an environment-dependent manner. PLoS One 11:e0168924

    PubMed  PubMed Central  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, Houston

    Google Scholar 

  • Xu Y, Jia Q, Zhou G, Zhang XQ, Angessa T, Broughton S, Yan G, Zhang W, Li C (2017) Characterization of the sdw1 semi-dwarf gene in barley. BMC Plant Biol 17:11

    PubMed  PubMed Central  Google Scholar 

  • Young KJ, Elliott GA (1994) An evaluation of barley accessions for adaptation to the cereal growing regions of Western Australia, based on time to ear emergence. Aust J Agric Res 45:75

    Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Google Scholar 

  • Zhang D-P, Zhou Y, Yin JF, Yan XJ, Lin S, Xu WF, Baluška F, Wang YP, Xia YJ, Liang GH, Liang JS (2015) Rice G-protein subunits qPE9-1 and RGB1 play distinct roles in abscisic acid responses and drought adaptation. J Exp Bot 66:6371–6384

    PubMed  CAS  Google Scholar 

  • Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

VHD was funded by Murdoch University with the International Tuition Fee Scholarship (ITFS) and Murdoch Strategic Scholarship (MSS).

Availability of data and material

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable

Funding

This work was supported by the Grains Research and Development Corporation (No. UMU00050).

Author information

Authors and Affiliations

Authors

Contributions

CL and CBH conceptualised the project. VHD, TTA and LM contributed to field phenotyping. VHD and XZ contributed to genetic material collection and genotyping. VHD and CBH contributed to data analysis and interpretation and wrote the original paper. CL and CBH reviewed and edited the manuscript. VHD, CBH, XZ, TTA, LM and CL read and approved the final manuscript.

Corresponding author

Correspondence to Chengdao Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key message

Allele-specific molecular markers of semi-dwarf genes sdw1 and ari-e provide an accurate measurement of the genetic effects and their interactions for plant height, flowering time and grain yield.

Electronic supplementary material

ESM 1

(DOCX 2433 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, V.H., Hill, C.B., Zhang, XQ. et al. Genetic dissection of the interactions between semi-dwarfing genes sdw1 and ari-e and their effects on agronomic traits in a barley MAGIC population. Mol Breeding 40, 64 (2020). https://doi.org/10.1007/s11032-020-01145-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-020-01145-5

Keywords

Navigation