Skip to main content
Log in

Effect of Fluorspar and Industrial Wastes (Red Mud and Ferromanganese Slag) on Desulfurization Efficiency of Molten Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Fluorspar (CaF2) has been widely used to control the physicochemical properties of slag in steelmaking processes. However, it is very important to reduce the CaF2 consumption because it causes various environmental problems. In the current study, therefore, the effect of industrial waste materials such as red mud (RM) and ferromanganese slag (FMS) on the desulfurization behavior of molten steel was investigated to find potential substitutes for fluorspar. Compared to conventional 10 pct CaF2-containing ladle slag, when excess industrial wastes were added (i.e., more than 10 mass pct), the composition of the slag was dramatically changed (SiO2 increases, while FetO and MnO decrease). Therefore, the sulfide capacity of the slag decreased, and the viscosity of the slag increased. Thus, the desulfurization efficiency was also reduced. However, when the RM or FMS were added not more than 10 mass pct to lean-CaF2 (3 pct) slag, the sulfide capacity of the slag was equivalent to 10 pct CaF2-containing ladle slag; thus, the desulfurization efficiency was also equivalent with lower melting point and higher fraction of liquid phase. Consequently, it was confirmed that a small amount (less than 10 mass pct) of industrial wastes can be added as a desulfurization fluxing agent as a partial substitute for fluorspar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. E. Andersson and D. Sichen: Steel Research Int., 2009, vol. 80, pp. 544-51.

    CAS  Google Scholar 

  2. A. Putan, V. Putan, T. Heput and A. Socalici: Rev. Metall., 2013, vol. 49, pp. 31-44.

    Article  CAS  Google Scholar 

  3. K. C. Mills: Slag Atlas, 2nd ed, Verlag Stahleisen GmbH, Düsseldorf, 1995, p. 362.

    Google Scholar 

  4. J. H. Park and D. J. Min: J. Non-Cryst. Solids, 2004, vol. 337, pp. 150-56.

    Article  CAS  Google Scholar 

  5. J. H. Park, D. J. Min and H. S. Song: ISIJ Int., 2002, vol. 42, pp. 38-43.

    Article  CAS  Google Scholar 

  6. F. Shahbazian, D. Sichen, K. C. Mills and S. Seetharaman: Ironmaking & Steelmaking, 1999, vol. 26, pp. 193-99.

    Article  CAS  Google Scholar 

  7. P. Kozakevitch: Rev. Metall., 1954, 51, 569-87.

    Article  CAS  Google Scholar 

  8. J. R. Maclean, P. W. Kingston, J. B. MacDonald and W. F. Caley: Ironmaking & Steelmaking, 1997, 24, 406-11.

    CAS  Google Scholar 

  9. J. H. Park, D. J. Min and H. S. Song: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 723-28.

    Article  CAS  Google Scholar 

  10. T. S. Kim and J. H. Park: ISIJ Int., 2014, vol. 54, pp. 2031-38.

    Article  CAS  Google Scholar 

  11. J. S. Han, J. G. Kang, J. H. Shin, Y. Chung and J. H. Park: Ceram. Int., 2018, vol. 44, pp. 13197-13204.

    Article  CAS  Google Scholar 

  12. M. O. Suk and J. H. Park: J. Am. Ceram. Soc., 2009, vol. 92, pp. 717-23.

    Article  CAS  Google Scholar 

  13. J. H. Park, M. O. Suk, I. H. Jung, M. Guo and B. Blanpain: Steel Res. Int., 2010, vol. 81, pp. 860-68.

    Article  CAS  Google Scholar 

  14. A. I. Zaitsev, A. V. Leites, A. D. Litvina and B. M. Mogutnov: Steel Res., 1994, vol. 65, pp. 368-74.

    Article  CAS  Google Scholar 

  15. A. S. B. Moreira, C. A. Silva and I. A. Silva: REM: Int. Eng. J, 2018, vol. 71, pp. 261-67.

    Google Scholar 

  16. Y. Kashiwaya and A. Cramb: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 401-07.

    Article  CAS  Google Scholar 

  17. J. H. Park and D. J. Min: Steel Res. Int., 2004, vol. 75, pp. 807-11.

    Article  CAS  Google Scholar 

  18. Fluorspar supply: trade trends & new sources (http://imformed.com/fluorspar-supply-trade-trends-new-sources/) accessed on 1st Feb 2020.

  19. T. S. Tribe, P. W. Kingston, J. B. MacDonald and W. F. Caley: Ironmaking & Steelmaking, 1994, vol. 21, pp. 145-49.

    CAS  Google Scholar 

  20. S. H. Amini, O. Ostrovski, and M. P. Brungs: Proc. of 7th Int. Conf. on Molten Slags, Fluxes and Salts, The South African Institute of Mining and Metallurgy, 2004, pp. 595-99.

  21. J. Y. Choi, D. J. Kim and H. G. Lee: ISIJ Int., 2001, vol. 3, pp. 216-24.

    Article  Google Scholar 

  22. C. R. Borra, B. Blanpain, Y. Pontikes and K. Binnemans: J. Sustain. Metall, 2016, vol. 2, pp. 365-86.

    Article  Google Scholar 

  23. K. Evans: J. Sustain. Metall, 2016, vol. 2, pp. 316-31.

    Article  Google Scholar 

  24. Y. H. Park and Y. N. Jung: Magazine of RCR, 2017, vol. 12, pp. 22-27.

    Google Scholar 

  25. International Aluminium Institute (IAI): Bauxite ResidueManagement_Best Practice, July 2015, pp. 1–31.

  26. P. E. Tsakiridis, S. Agatzini-Leonardou and P. Oustadakis: J. Hazard. Mater., 2004, vol. B116, pp. 103-10.

    Article  CAS  Google Scholar 

  27. M. Singh, S. N. Upadhayay and P. M. Prasad: Waste Manage., 1996, vol. 16, pp. 665-70.

    Article  CAS  Google Scholar 

  28. X. Liu and N. Zhang: Waste Manage. & Res., 2010, vol. 29, pp. 1053-63.

    Article  CAS  Google Scholar 

  29. J. Yang and B. Xiao: Constr. Build. Mater., 2008, vol. 22, pp. 2299-2307.

    Article  Google Scholar 

  30. D. D. Arhin, D. S. Konadu, E. Annan, F. P. Buabeng, A. Yaya and B. A. Tuffour: Am. J. Mater. Sci., 2013, vol. 3, pp. 110-19.

    Google Scholar 

  31. S. E. Olsen, M. Tangstad, T. Lindstad: FeMn: Production of Manganese Ferroalloys, SINTEF and Tapir Academin Press, Trondheim, Norway, 2007.

    Google Scholar 

  32. D. R. Groot, D. M. Kazadi, H. Pollmann, J. P. R. de Villiers, T. Redtmann and J. Steenkamp: Proc. INFACON XIII, The Thirteenth International Ferroalloys Congress, June 9–13, Almaty, Kazakhstan, 2013, pp. 1051–60.

  33. J. H. Heo, Y. Chung, J. H. Park: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1154-61.

    Article  CAS  Google Scholar 

  34. J. Safarian, G. Tranell, L. Kolbeinsen, M. Tangstad, S. Gaal and J. Kaczorowski: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 702-12.

    Article  CAS  Google Scholar 

  35. J. Safarian, L. Kolbeinsen, M. Tangstad and G. Tranell: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 929-39.

    Article  CAS  Google Scholar 

  36. J. K. Kang, J. H. Shin, Y. Chung and J. H. Park: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2123-35.

    Article  CAS  Google Scholar 

  37. B. Deo and R. Boom: Fundamentals of Steelmaking Metallurgy, Prentice Fall, New York, NY, 1993.

    Google Scholar 

  38. J. K. Jung and J. J. Pak: J. Kor. Inst. Met. Mater, 2000, vol. 38, pp. 585-90.

    CAS  Google Scholar 

  39. X. Chushao and T. Xin: ISIJ Int., 1992, vol. 32, pp. 1081-83.

    Article  Google Scholar 

  40. E. Oktay and R. J. Fruehan: Steel Res., 1995, vol. 66, pp. 93-95.

    Article  CAS  Google Scholar 

  41. N. Bannenberg, H. Lachmund and B. Prothmann: ISS Steelmaking Conf. Proc., 1994, vol. 77, pp. 135-43.

    CAS  Google Scholar 

  42. H. Lachmund and Y. Xie: Ironmaking & Steelmaking, 2003, vol. 30, pp. 125-29.

    Article  Google Scholar 

  43. K. Takahashi, K. Utagawa, H. Shibata, S. Kitamura, N. Kikuchi and Y.Kishimoto: ISIJ Int., 2012, vol. 52, pp. 10-17.

    Article  CAS  Google Scholar 

  44. D. Lindstrom and D. Sichen: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 83-92.

    Article  CAS  Google Scholar 

  45. C. J. B. Fincham and F. D. Richardson: Proc. R. Soc. Lond. A, 1954, vol. 223, pp. 40-62.

    Article  CAS  Google Scholar 

  46. Y. B. Kang and A. D. Pelton: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 979-94.

    Article  CAS  Google Scholar 

  47. A. Einstein: Ann. Phys, 1906, vol. 19, pp. 289-306.

    Article  CAS  Google Scholar 

  48. R. Roscoe: Br. J. Appl. Phys, 1952, vol. 3, pp. 267-69.

    Article  Google Scholar 

  49. S. H. Seok, S. M. Jung, Y. S. Lee and D. J. Min: ISIJ Int., 2007, vol. 47, pp. 1090-96.

    Article  CAS  Google Scholar 

  50. J. H. Heo, J. S. Yoo, Y. Chung and J. H. Park: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 903-13.

    Article  CAS  Google Scholar 

  51. J. H. Heo and J. H. Park: Calphad, 2017, vol. 58, pp. 219-28.

    Article  CAS  Google Scholar 

  52. J. H. Heo and J. H. Park: Calphad, 2017, vol. 58, pp. 229-38.

    Article  CAS  Google Scholar 

  53. J. H. Park: Steel Res. Int., 2013, vol. 84, pp. 664-69.

    Article  CAS  Google Scholar 

  54. G. H. Park, Y. B. Kang and J. H. Park: ISIJ Int., 2011, vol. 51, pp. 1375-82.

    Article  Google Scholar 

  55. Y. B. Kang and J. H. Park: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1211-17.

    Article  CAS  Google Scholar 

  56. J. H. Park and G. H. Park: ISIJ Int., 2012, vol. 52, pp. 764-69.

    Article  CAS  Google Scholar 

  57. J. H. Park: Met. Mater. Int., 2013, vol. 19, pp. 577-84.

    Article  CAS  Google Scholar 

  58. S. J. Jeong, T. S. Kim and J. H. Park: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 545-53.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Industrial Strategic Technology Development program (Grant Number 10063056) funded by the Ministry of Trade, Industry & Energy (MOTIE), Korea. In addition, this research was partly funded by the Competency Development Program for Industry Specialists (Grant Number P0002019) of the MOTIE, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Hyun Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 16, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, T.S., Park, J.H. Effect of Fluorspar and Industrial Wastes (Red Mud and Ferromanganese Slag) on Desulfurization Efficiency of Molten Steel. Metall Mater Trans B 51, 2309–2320 (2020). https://doi.org/10.1007/s11663-020-01889-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01889-7

Navigation