Skip to main content

Advertisement

Log in

Interaction of cancer cells with mesenchymal stem cells: implications in metastatic progression

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Mesenchymal stem cells (MSCs) are multipotent stem cells that reside in various parts of the body like adipose tissue, bone marrow and umbilical cord with an ability to differentiate into chondrocytes, adipocytes and osteocytes. Rigorous research has helped us understand that MSCs home to wound sites and this homing mechanism has been used in the treatment of many inflammatory diseases. It is now emerging that MSCs are an important component of the tumor microenvironment (TME) and contribute to tumor plasticity. MSCs are one of the key players within the TME and can either inhibit or promote tumor cell growth by distinct types of cellular interaction. These multifunctional cells can reorganize the tumor stroma which, in turn, can trigger changes in metastatic behavior and promote dedifferentiation to develop cancer stem-like cells. On the contrary, MSCs have been proposed as ideal candidates as drug delivery agents in treatment of various cancers. The double-edged role of MSCs in tumor has made it difficult to pinpoint whether MSCs promote or inhibit tumor growth and progression. During cancer progression, tumor cells undergo molecular and phenotypic changes as a result of microenvironmental cues, genetic and epigenetic alterations and treatment-imposed selective pressures which contribute to tumor heterogeneity and therapy resistance. So, understanding the mechanisms underlying the tumor plasticity may deliver new strategies for targeting cancer metastasis and resistance to therapy. Accordingly, this review focuses on diverse mechanisms of interaction between MSCs and cancer cells with emphasis on different types of intercellular communication affecting tumor progression and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1:

Similar content being viewed by others

References

  1. Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. Development 16(3):381–390

    CAS  Google Scholar 

  2. Friedenstein AJ, Chailakhjan RK, Lalykina K (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Prolif 3(4):393–403

    CAS  Google Scholar 

  3. Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF (2013) Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 34(6):747

    CAS  Google Scholar 

  4. Salem HK, Thiemermann C (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28(3):585–596

    CAS  Google Scholar 

  5. Timaner M, Tsai K, Shaked Y (2019) The multifaceted role of mesenchymal stem cells in cancer. In: Seminars in cancer biology 2019. Academic

  6. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A (2005) Clarification of the nomenclature for MSC: the international society for cellular therapy position statement. Cytotherapy 7(5):393–395

    CAS  Google Scholar 

  7. Dominici ML, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    CAS  Google Scholar 

  8. Snykers S, De Kock J, Tamara V, Rogiers V (2011) Hepatic differentiation of mesenchymal stem cells: in vitro strategies. In: Mesenchymal stem cell assays and applications. Humana Press, pp 305–314

  9. Oswald J, Boxberger S, Jørgensen B, Feldmann S, Ehninger G, Bornhäuser M, Werner C (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22(3):377–384

    Google Scholar 

  10. Takeda YS, Xu Q (2015) Neuronal differentiation of human mesenchymal stem cells using exosomes derived from differentiating neuronal cells. PLoS One 10(8):e0135111

    Google Scholar 

  11. Trivanovic D, Kocic J, Mojsilovic S, Krstic A, Ilic V, Djordjevic IO, Santibanez JF, Jovcic G, Terzic M, Bugarski D (2013) Mesenchymal stem cells isolated from peripheral blood and umbilical cord Wharton’s jelly. Srp Arh Celok Lek 141(3–4):178–186

    Google Scholar 

  12. Hassan G, Kasem I, Soukkarieh C, Aljamali M (2017) A simple method to isolate and expand human umbilical cord derived mesenchymal stem cells: using explant method and umbilical cord blood serum. Int J Stem Cells 10(2):184

    CAS  Google Scholar 

  13. Wang Y, Yu X, Chen E, Li L (2016) Liver-derived human mesenchymal stem cells: a novel therapeutic source for liver diseases. Stem cell Res Ther 7(1):71

    Google Scholar 

  14. Mahmoudifar N, Doran PM. Mesenchymal stem cells derived from human adipose tissue. In: Doran P (ed) Cartilage tissue engineering 2015. Methods in Molecular Biology, vol 1340. Humana Press, New York, NY

  15. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749

    CAS  Google Scholar 

  16. Jackson WM, Nesti LJ, Tuan RS (2012) Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells. Stem Cells Transl Med 1(1):44–50

    CAS  Google Scholar 

  17. Fitzsimmons RE, Mazurek MS, Soos A, Simmons CA (2018) Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem Cells Int

  18. Kong L, Zheng LZ, Qin L, Ho KK (2017) Role of mesenchymal stem cells in osteoarthritis treatment. J Orthopaed Transl 9:89–103

    Google Scholar 

  19. Amorin B, Alegretti AP, Valim V, Pezzi A, Laureano AM, da Silva MA, Wieck A, Silla L (2014) Mesenchymal stem cell therapy and acute graft-versus-host disease: a review. Hum Cell 27(4):137–150

    CAS  Google Scholar 

  20. Xu WT, Bian ZY, Fan QM, Li G, Tang TT (2009) Human mesenchymal stem cells (hMSCs) target osteosarcoma and promote its growth and pulmonary metastasis. Cancer Lett 281(1):32–41

    CAS  Google Scholar 

  21. Cao Y, Gang X, Sun C, Wang G (2017) Mesenchymal stem cells improve healing of diabetic foot ulcer. J Diab Res

  22. Wang YH, Wu DB, Chen B, Chen EQ, Tang H (2018) Progress in mesenchymal stem cell-based therapy for acute liver failure. Stem Cell Res Ther 9(1):227

    CAS  Google Scholar 

  23. Dvorak HF (1986) Tumors: wounds that do not heal. N Engl J Med 315(26):1650–1659

    CAS  Google Scholar 

  24. Brennen WN, Chen S, Denmeade SR, Isaacs JT (2013) Quantification of mesenchymal stem cells (MSCs) at sites of human prostate cancer. Oncotarget 4(1):106

    Google Scholar 

  25. Chai L, Bai L, Li L, Chen F, Zhang J (2018) Biological functions of lung cancer cells are suppressed in co-culture with mesenchymal stem cells isolated from umbilical cord. Exp Therapeut Med 15(1):1076–1080

    CAS  Google Scholar 

  26. He N, Kong Y, Lei X, Liu Y, Wang J, Xu C, Wang Y, Du L, Ji K, Li Z, Liu Q (2018) MSCs inhibit tumor progression and enhance radiosensitivity of breast cancer cells by down-regulating Stat3 signaling pathway. Cell Death Dis 9(10):1026

    Google Scholar 

  27. Sun B, Yu KR, Bhandari DR, Jung JW, Kang SK, Kang KS (2010) Human umbilical cord blood mesenchymal stem cell-derived extracellular matrix prohibits metastatic cancer cell MDA-MB-231 proliferation. Cancer Lett 296(2):178–185

    CAS  Google Scholar 

  28. Lakota J, Gocarova K, Spanik S (2015) Treatment of metastatic head and neck cancer with mesenchymal stem cells combined with prodrug gene therapy. Exp Oncol 37(4):298

    CAS  Google Scholar 

  29. Du Bois A, Lück HJ, Meier W, Adams HP, Mobus V, Costa S, Bauknecht T, Richter B, Warm M, Schröder W, Olbricht S (2003) A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. J Natl Cancer Inst 95(17):1320–1329

    Google Scholar 

  30. Porada CD, Almeida-Porada G (2010) Mesenchymal stem cells as therapeutics and vehicles for gene and drug delivery. Adv Drug Deliv Rev 62(12):1156–1166

    CAS  Google Scholar 

  31. Li W, Ren G, Huang Y, Su J, Han Y, Li J, Chen X, Cao K, Chen Q, Shou P, Zhang L (2012) Mesenchymal stem cells: a double-edged sword in regulating immune responses. Cell Death Differ 19(9):1505

    CAS  Google Scholar 

  32. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    CAS  Google Scholar 

  33. Fouad YA, Aanei C (2017) Revisiting the hallmarks of cancer. Am J Cancer Res 7(5):1016

    CAS  Google Scholar 

  34. Alizadeh AM, Shiri S, Farsinejad S (2014) Metastasis review: from bench to bedside. Tumor Biol 35(9):8483–8523

    Google Scholar 

  35. Menon LG, Picinich S, Koneru R, Gao H, Lin SY, Koneru M, Mayer-Kuckuk P, Glod J, Banerjee D (2007) Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells 25(2):520–528

    CAS  Google Scholar 

  36. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557

    CAS  Google Scholar 

  37. Xu R, Zhao X, Zhao Y, Chen B, Sun L, Xu C, Shen B, Wang M, Xu W, Zhu W (2018) Enhanced gastric cancer growth potential of mesenchymal stem cells derived from gastric cancer tissues educated by CD 4 + T cells. Cell Prolif 51(2):e12399

    Google Scholar 

  38. Chen B, Yu J, Wang Q, Zhao Y, Sun L, Xu C, Zhao X, Shen B, Wang M, Xu W, Zhu W (2018) Human bone marrow mesenchymal stem cells promote gastric cancer growth via regulating c-Myc. Stem Cells Int. https://doi.org/10.1155/2018/9501747

    Article  Google Scholar 

  39. Zischek C, Niess H, Ischenko I, Conrad C, Huss R, Jauch KW, Nelson PJ, Bruns C (2009) Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma. Ann Surg 250(5):747–753

    Google Scholar 

  40. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65(8):3307–3318

    CAS  Google Scholar 

  41. Zhang X, Hu F, Li G, Li G, Yang X, Liu L, Zhang R, Zhang B, Feng Y (2018) Human colorectal cancer-derived mesenchymal stem cells promote colorectal cancer progression through IL-6/JAK2/STAT3 signaling. Cell Death Dis 9(2):25

    Google Scholar 

  42. Mangraviti A, Tzeng SY, Gullotti D, Kozielski KL, Kim JE, Seng M, Abbadi S, Schiapparelli P, Sarabia-Estrada R, Vescovi A, Brem H (2016) Non-virally engineered human adipose mesenchymal stem cells produce BMP4, target brain tumors, and extend survival. Biomaterials 100:53–66

    CAS  Google Scholar 

  43. Kim SW, Kim SJ, Park SH, Yang HG, Kang MC, Choi YW, Kim SM, Jeun SS, Sung YC (2013) Complete regression of metastatic renal cell carcinoma by multiple injections of engineered mesenchymal stem cells expressing dodecameric TRAIL and HSV-TK. Clin Cancer Res 19(2):415–427

    CAS  Google Scholar 

  44. Gao P, Ding Q, Wu Z, Jiang H, Fang Z (2010) Therapeutic potential of human mesenchymal stem cells producing IL-12 in a mouse xenograft model of renal cell carcinoma. Cancer Lett 290(2):157–166

    CAS  Google Scholar 

  45. Smith CL, Chaichana KL, Lee YM, Lin B, Stanko KM, O’donnell T, Gupta S, Shah SR, Wang J, Wijesekera O, Delannoy M (2015) Pre-exposure of human adipose mesenchymal stem cells to soluble factors enhances their homing to brain cancer. Stem cells Transl Med 4(3):239–251

    CAS  Google Scholar 

  46. Rattigan Y, Hsu JM, Mishra PJ, Glod J, Banerjee D (2010) Interleukin 6 mediated recruitment of mesenchymal stem cells to the hypoxic tumor milieu. Exp Cell Res 316(20):3417–3424

    CAS  Google Scholar 

  47. Shinojima N, Hossain A, Takezaki T, Fueyo J, Gumin J, Gao F, Nwajei F, Marini FC, Andreeff M, Kuratsu JI, Lang FF (2013) TGF-β mediates homing of bone marrow-derived human mesenchymal stem cells to glioma stem cells. Cancer Res 73(7):2333–2344

    CAS  Google Scholar 

  48. Dwyer RM, Potter-Beirne SM, Harrington KA, Lowery AJ, Hennessy E, Murphy JM, Barry FP, O’Brien T, Kerin MJ (2007) Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 13(17):5020–5027

    CAS  Google Scholar 

  49. Yu PF, Huang Y, Han YY, Lin LY, Sun WH, Rabson AB, Wang Y, Shi YF (2017) TNFα-activated mesenchymal stromal cells promote breast cancer metastasis by recruiting CXCR2 + neutrophils. Oncogene 36(4):482

    CAS  Google Scholar 

  50. Prantl L, Muehlberg F, Navone NM, Song YH, Vykoukal J, Logothetis CJ, Alt EU (2010) Adipose tissue-derived stem cells promote prostate tumor growth. Prostate 70(15):1709–1715

    CAS  Google Scholar 

  51. Shinagawa K, Kitadai Y, Tanaka M, Sumida T, Kodama M, Higashi Y, Tanaka S, Yasui W, Chayama K (2010) Mesenchymal stem cells enhance growth and metastasis of colon cancer. Int J Cancer 127(10):2323–2333

    CAS  Google Scholar 

  52. Fregni G, Quinodoz M, Möller E, Vuille J, Galland S, Fusco C, Martin P, Letovanec I, Provero P, Rivolta C, Riggi N (2018) Reciprocal modulation of mesenchymal stem cells and tumor cells promotes lung cancer metastasis. EBioMedicine 29:128–145

    Google Scholar 

  53. Li W, Zhou Y, Yang J, Zhang X, Zhang H, Zhang T, Zhao S, Zheng P, Huo J, Wu H (2015) Gastric cancer-derived mesenchymal stem cells prompt gastric cancer progression through secretion of interleukin-8. J Exp Clin Cancer Res 34(1):52

    CAS  Google Scholar 

  54. Bartosh TJ, Ullah M, Zeitouni S, Beaver J, Prockop DJ (2016) Cancer cells enter dormancy after cannibalizing mesenchymal stem/stromal cells (MSCs). Proc Natl Acad Sci 113(42):E6447–E6456

    CAS  Google Scholar 

  55. Chen YC, Gonzalez ME, Burman B, Zhao X, Anwar T, Tran M, Medhora N, Hiziroglu AB, Lee W, Cheng YH, Choi Y (2019) Mesenchymal stem/stromal cell engulfment reveals metastatic advantage in breast cancer. Cell Rep 27(13):3916–3926

    CAS  Google Scholar 

  56. Hass R, Otte A (2012) Mesenchymal stem cells as all-round supporters in a normal and neoplastic microenvironment. Cell Commun Signal 10(1):26

    CAS  Google Scholar 

  57. Hay ED (1995) An overview of epithelio-mesenchymal transformation. Cells Tissues Organs. 154(1):8–20

    CAS  Google Scholar 

  58. Martin TA, Ye L, Sanders AJ, Lane J, Jiang WG (2013) Cancer invasion and metastasis: molecular and cellular perspective. In: Madame curie bioscience database [internet]. Landes Bioscience

  59. Bocci F, Levine H, Onuchic JN, Jolly MK (2019) Deciphering the dynamics of epithelial-mesenchymal transition and cancer stem cells in tumor progression. Curr Stem Cell Rep 5(1):11–21

    Google Scholar 

  60. Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123(24):4195–4200

    CAS  Google Scholar 

  61. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15(12):786–801

    CAS  Google Scholar 

  62. Chu Y, Tang H, Guo Y, Guo J, Huang B, Fang F, Cai J, Wang Z (2015) Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer. Exp Cell Res 337(1):16–27

    CAS  Google Scholar 

  63. Varga J, Greten FR (2017) Cell plasticity in epithelial homeostasis and tumorigenesis. Nat Cell Biol 19(10):1133

    CAS  Google Scholar 

  64. Brabletz T, Kalluri R, Nieto MA, Weinberg RA (2018) EMT in cancer. Nat Rev Cancer 18(2):128

    CAS  Google Scholar 

  65. Moreno-Bueno G, Portillo F, Cano A (2008) Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 27(55):6958

    CAS  Google Scholar 

  66. Meng F, Wu G (2012) The rejuvenated scenario of epithelial-mesenchymal transition (EMT) and cancer metastasis. Cancer Metastasis Rev 31(3–4):455–467

    CAS  Google Scholar 

  67. Pastushenko I, Blanpain C (2018) EMT transition states during tumor progression and metastasis. Trends Cell Biol 29(3):212–226

    Google Scholar 

  68. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297(5584):1183–1186

    CAS  Google Scholar 

  69. Boumahdi S, de Sauvage FJ (2019) The great escape: tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov 10:1–8

    Google Scholar 

  70. Takigawa H, Kitadai Y, Shinagawa K, Yuge R, Higashi Y, Tanaka S, Yasui W, Chayama K (2017) Mesenchymal stem cells induce epithelial to mesenchymal transition in colon cancer cells through direct cell-to-cell contact. Neoplasia 19(5):429–438

    CAS  Google Scholar 

  71. Jung Y, Kim JK, Shiozawa Y, Wang J, Mishra A, Joseph J, Berry JE, McGee S, Lee E, Sun H, Wang J (2013) Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun 4:1795

    Google Scholar 

  72. Kabashima-Niibe A, Higuchi H, Takaishi H, Masugi Y, Matsuzaki Y, Mabuchi Y, Funakoshi S, Adachi M, Hamamoto Y, Kawachi S, Aiura K (2013) Mesenchymal stem cells regulate epithelial-mesenchymal transition and tumor progression of pancreatic cancer cells. Cancer Sci 104(2):157–164

    CAS  Google Scholar 

  73. McAndrews KM, McGrail DJ, Ravikumar N, Dawson MR (2015) Mesenchymal stem cells induce directional migration of invasive breast cancer cells through TGF-β. Sci Rep 5:16941

    CAS  Google Scholar 

  74. Corcoran KE, Trzaska KA, Fernandes H, Bryan M, Taborga M, Srinivas V, Packman K, Patel PS, Rameshwar P (2008) Mesenchymal stem cells in early entry of breast cancer into bone marrow. PLoS One 3(6):e2563

    Google Scholar 

  75. Iser IC, Ceschini SM, Onzi GR, Bertoni AP, Lenz G, Wink MR (2016) Conditioned medium from adipose-derived stem cells (ADSCs) promotes epithelial-to-mesenchymal-like transition (EMT-like) in glioma cells in vitro. Mol Neurobiol 53(10):7184–7199

    CAS  Google Scholar 

  76. Yan XL, Jia YL, Chen L, Zeng Q, Zhou JN, Fu CJ, Chen HX, Yuan HF, Li ZW, Shi L, Xu YC (2013) Hepatocellular carcinoma-associated mesenchymal stem cells promote hepatocarcinoma progression: role of the S100A4-miR155-SOCS1-MMP9 axis. Hepatology 57(6):2274–2286

    CAS  Google Scholar 

  77. Correa D, Somoza RA, Lin P, Schiemann WP, Caplan AI (2016) Mesenchymal stem cells regulate melanoma cancer cells extravasation to bone and liver at their perivascular niche. Int J Cancer 138(2):417–427

    CAS  Google Scholar 

  78. Thalmann GN, Sikes RA, Devoll RE, Kiefer JA, Markwalder R, Klima I, Farach-Carson CM, Studer UE, Chung LW (1999) Osteopontin: possible role in prostate cancer progression. Clin Cancer Res 5(8):2271–2277

    CAS  Google Scholar 

  79. Yeatman TJ, Chambers AF (2003) Osteopontin and colon cancer progression. Clin Exp Metas 20(1):85–90

    CAS  Google Scholar 

  80. Weber GF, Lett GS, Haubein NC (2010) Osteopontin is a marker for cancer aggressiveness and patient survival. Br J Cancer 103(6):861

    CAS  Google Scholar 

  81. Ma M, Ye JY, Deng R, Dee CM, Chan GC (2011) Mesenchymal stromal cells may enhance metastasis of neuroblastoma via SDF-1/CXCR4 and SDF-1/CXCR7 signaling. Cancer Lett 312(1):1

    CAS  Google Scholar 

  82. Reagan MR, Rosen CJ (2016) Navigating the bone marrow niche: translational insights and cancer-driven dysfunction. Nat Rev Rheumatol 12(3):154

    CAS  Google Scholar 

  83. Sakamoto S, Kyprianou N (2010) Targeting anoikis resistance in prostate cancer metastasis. Mol Aspects Med 31(2):205–214

    CAS  Google Scholar 

  84. Simpson CD, Anyiwe K, Schimmer AD (2008) Anoikis resistance and tumor metastasis. Cancer Lett 272(2):177–185

    CAS  Google Scholar 

  85. Ayla S, Karahüseyinogluc S (2019) Cancer stem cells, their microenvironment and Anoikis. Crit Rev Oncogenesis 24(1):27–34

    Google Scholar 

  86. Du L, Han XG, Tu B, Wang MQ, Qiao H, Zhang SH, Fan QM, Tang TT (2018) CXCR1/Akt signaling activation induced by mesenchymal stem cell-derived IL-8 promotes osteosarcoma cell anoikis resistance and pulmonary metastasis. Cell Death Dis 9(7):714

    Google Scholar 

  87. Meads MB, Gatenby RA, Dalton WS (2009) Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer 9(9):665

    CAS  Google Scholar 

  88. Roodhart JM, Daenen LG, Stigter EC, Prins HJ, Gerrits J, Houthuijzen JM, Gerritsen MG, Schipper HS, Backer MJ, van Amersfoort M, Vermaat JS (2011) Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell 20(3):370–383

    CAS  Google Scholar 

  89. Kucerova L, Skolekova S, Matuskova M, Bohac M, Kozovska Z (2013) Altered features and increased chemosensitivity of human breast cancer cells mediated by adipose tissue-derived mesenchymal stromal cells. BMC Cancer 13(1):535

    Google Scholar 

  90. Xu Q, Wang L, Li H, Han Q, Li J, Qu X, Huang S, Zhao RC (2012) Mesenchymal stem cells play a potential role in regulating the establishment and maintenance of epithelial-mesenchymal transition in MCF7 human breast cancer cells by paracrine and induced autocrine TGF-β. Int J Oncol 41(3):959–968

    CAS  Google Scholar 

  91. Klopp AH, Lacerda L, Gupta A, Debeb BG, Solley T, Li L, Spaeth E, Xu W, Zhang X, Lewis MT, Reuben JM (2010) Mesenchymal stem cells promote mammosphere formation and decrease E-cadherin in normal and malignant breast cells. PLoS ONE 5(8):e12180

    Google Scholar 

  92. Chen J, Ji T, Wu D, Jiang S, Zhao J, Lin H, Cai X (2019) Human mesenchymal stem cells promote tumor growth via MAPK pathway and metastasis by epithelial mesenchymal transition and integrin α5 in hepatocellular carcinoma. Cell Death Dis 10(6):1–2

    Google Scholar 

  93. Li TA, Zhang C, DiNG Y, Zhai WE, Liu KU, Bu FA, Tu TA, Sun L, Zhu WE, Zhou F, Qi W (2015) Umbilical cord-derived mesenchymal stem cells promote proliferation and migration in MCF-7 and MDA-MB-231 breast cancer cells through activation of the ERK pathway. Oncol Rep 34(3):1469–1477

    CAS  Google Scholar 

  94. Wang Y, Chu Y, Yue B, Ma X, Zhang G, Xiang H, Liu Y, Wang T, Wu X, Chen B (2017) Adipose-derived mesenchymal stem cells promote osteosarcoma proliferation and metastasis by activating the STAT3 pathway. Oncotarget 8(14):23803

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalmoli Bhattacharyya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khurana, S., Bhattacharyya, S. Interaction of cancer cells with mesenchymal stem cells: implications in metastatic progression. J Indian Inst Sci 100, 555–565 (2020). https://doi.org/10.1007/s41745-020-00182-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-020-00182-5

Keywords

Navigation