Skip to main content

Advertisement

Log in

Cytotoxicity, cellular localization and photophysical properties of Re(I) tricarbonyl complexes bound to cysteine and its derivatives

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The potential chemotherapeutic properties coupled to photochemical transitions make the family of fac-[Re(CO)3(N,N)X]0/+ (N,N = a bidentate diimine such as 2,2′-bipyridine (bpy); X = halide, H2O, pyridine derivatives, PR3, etc.) complexes of special interest. We have investigated reactions of the aqua complex fac-[Re(CO)3(bpy)(H2O)](CF3SO3) (1) with potential anticancer activity with the amino acid l-cysteine (H2Cys), and its derivative N-acetyl-l-cysteine (H2NAC), as well as the tripeptide glutathione (H3A), under physiological conditions (pH 7.4, 37 °C), to model the interaction of 1 with thiol-containing proteins and enzymes, and the impact of such coordination on its photophysical properties and cytotoxicity. We report the syntheses and characterization of fac-[Re(CO)3(bpy)(HCys)]·0.5H2O (2), Na(fac-[Re(CO)3(bpy)(NAC)]) (3), and Na(fac-[Re(CO)3(bpy)(HA)])·H2O (4) using extended X-ray absorption spectroscopy, IR and NMR spectroscopy, electrospray ionization spectrometry, as well as the crystal structure of {fac-[Re(CO)3(bpy)(HCys)]}4·9H2O (2 + 1.75 H2O). The emission spectrum of 1 displays a variance in Stokes shift upon coordination of l-cysteine and N-acetyl-l-cysteine. Laser excitation at λ = 355 nm of methanol solutions of 13 was followed by measuring their ability to produce singlet oxygen (1O2) using direct detection methods. The cytotoxicity of 1 and its cysteine-bound complex 2 was assessed using the MDA-MB-231 breast cancer cell line, showing that the replacement of the aqua ligand on 1 with l-cysteine significantly reduced the cytotoxicity of the Re(I) tricarbonyl complex. Probing the cellular localization of 1 and 2 using X-ray fluorescence microscopy revealed an accumulation of 1 in the nuclear and/or perinuclear region, whereas the accumulation of 2 was considerably reduced, potentially explaining its reduced cytotoxicity.

Graphic abstract

Replacing the aqua ligand with cysteine in the antitumor active fac-[Re(CO)3(bpy)(H2O)](CF3SO3) complex significantly reduced its cellular accumulation and cytotoxicity against the MDA-MB-213 breast cancer cell line, shifted its maximum emission to considerably higher energies, and decreased its fluorescence quantum yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ESI–MS:

Electrospray ionization mass spectrometry

EXAFS:

Extended X-ray absorption fine structure spectroscopy

XFM:

X-ray fluorescence microscopy

PDT:

Photodynamic therapy

PACT:

Photo-activated chemotherapy

MT:

Metallothionein

GC-TCD:

Gas chromatography with thermal conductivity detection

HOMO:

Highest occupied molecular orbital

LUMO:

Lowest unoccupied molecular orbital

TD-DFT:

Time-dependent density functional theory

MLLCT:

Metal–ligand to ligand charge transfer

ILCT:

Intra-ligand charge transfer

bpy:

2,2′-Bipyridine

phen:

1,10-Phenanthroline

dmphen:

2,9-Dimethyl-1,10-phenantroline

DMEM:

Dulbecco’s Modified Eagles Medium

PBS:

Phosphate-buffered saline

IC50 :

Half-maximal inhibitory concentration

References

  1. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G (2011) Oncogene 31:1869–1883

    PubMed  Google Scholar 

  2. Szaciłowski K, Macyk W, Drzewiecka-Matuszek A, Brindell M, Stochel G (2005) Chem Rev 105:2647–2694

    PubMed  Google Scholar 

  3. Monro S, Colón KL, Yin H, Roque J, Konda P, Gujar S, Thummel RP, Lilge L, Cameron CG, McFarland SA (2019) Chem Rev 119:797–828

    CAS  PubMed  Google Scholar 

  4. van Straten D, Mashayekhi V, de Bruijn HS, Oliveira S, Robinson DJ (2017) Cancers (Basel) 9:19

    PubMed Central  Google Scholar 

  5. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) J Natl Cancer Inst 90:889–905

    CAS  PubMed  Google Scholar 

  6. Hasan T, Ortel B, Solban N, Pogue B (2006) In: Kufe DW, Bast RCJ, Hait WN, Hong WK, Pollock RE, Weichselbaum RR, Holland JF, Frei EI (eds) Cancer medicine. BC Decker Inc., Hamilton, pp 537–548

    Google Scholar 

  7. Muz B, de la Puente P, Azab F, Azab AK (2015) Hypoxia 3:83–92

    PubMed  PubMed Central  Google Scholar 

  8. Farrer NJ, Salassa L, Sadler PJ (2009) Dalton Trans 48:10690–10701

    Google Scholar 

  9. Bonnet S (2018) Dalton Trans 47:10330–10343

    CAS  PubMed  Google Scholar 

  10. Schatzschneider U (2017) Chapter 6—Metal complexes as delivery systems for CO, NO, and H2S to explore the signaling network of small-molecule messengers. In: Lo KK-W (ed) Inorganic and organometallic transition metal complexes with biological molecules and living cells. Academic Press, pp 181–204

  11. Faizan M, Muhammad N, Niazi KUK, Hu Y, Wang Y, Wu Y, Sun H, Liu R, Dong W, Zhang W, Gao Z (2019) Materials 12:1643

    CAS  PubMed Central  Google Scholar 

  12. Wegiel B, Gallo D, Csizmadia E, Harris C, Belcher J, Vercellotti GM, Penacho N, Seth P, Sukhatme V, Ahmed A, Pandolfi PP, Helczynski L, Bjartell A, Persson JL, Otterbein LE (2013) Cancer Res 74:7009–7021

    Google Scholar 

  13. Zuckerbraun BS, Chin BY, Bilban M, d’Avila JDC, Rao J, Billiar TR, Otterbein LE (2007) FASEB J. 21:1099–1106

    CAS  PubMed  Google Scholar 

  14. Gao P, Pan W, Li N, Tang B (2019) ACS Appl Mater Inter 11:26529–26558

    CAS  Google Scholar 

  15. Bruijnincx PC, Sadler PJ (2008) Curr Opin Chem Biol 12:197–206

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Imberti C, Zhang P, Huang H, Sadler PJ (2020) Angew Chem Int Edn 59:61–73

    CAS  Google Scholar 

  17. McKenzie LK, Bryant HE, Weinstein JA (2019) Coor Chem Rev 379:2–29

    CAS  Google Scholar 

  18. Friederike R, Wiktor S (2017) Curr Med Chem 24:4905–4950

    Google Scholar 

  19. Leonidova A, Gasser G (2014) ACS Chem Biol 9:2180–2193

    CAS  PubMed  Google Scholar 

  20. Pierri AE, Pallaoro A, Wu G, Ford PC (2012) J Am Chem Soc 134:18197–18200

    CAS  PubMed  Google Scholar 

  21. Kastl A, Dieckmann S, Wähler K, Völker T, Kastl L, Merkel AL, Vultur A, Shannan B, Harms K, Ocker M, Parak WJ, Herlyn M, Meggers E (2013) Chem Med Chem 8:924–927

    CAS  PubMed  Google Scholar 

  22. Leonidova A, Pierroz V, Rubbiani R, Heier J, Ferrari S, Gasser G (2014) Dalton Trans 43:4287–4294

    CAS  PubMed  Google Scholar 

  23. Zobi F, Blacque O, Schmalle HW, Spingler B, Alberto R (2004) Inorg Chem 43:2087–2096

    CAS  PubMed  Google Scholar 

  24. Lecina J, Palacios O, Atrian S, Capdevila M, Suades J (2015) J Biol Inorg Chem 20:465–474

    CAS  PubMed  Google Scholar 

  25. Lopez V, Foolad F, Kelleher SL (2011) Cancer Lett 304:41–51

    CAS  PubMed  Google Scholar 

  26. Alam S, Kelleher SL (2012) Nutrients 4:875–903

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Knopf KM, Murphy BL, MacMillan SN, Baskin JM, Barr MP, Boros E, Wilson JJ (2017) J Am Chem Soc 139:14302–14314

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Konkankit CC, King AP, Knopf KM, Southard TL, Wilson JJ (2019) ACS Med Chem Lett 10:822–827

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Williams DBG, Lawton M (2010) J Org Chem 75:8351–8354

    CAS  PubMed  Google Scholar 

  30. Marker SC, MacMillan SN, Zipfel WR, Li Z, Ford PC, Wilson JJ (2018) Inorg Chem 57:1311–1331

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Salignac B, Grundler PV, Cayemittes S, Frey U, Scopelliti R, Merbach AE, Hedinger R, Hegetschweiler K, Alberto R, Prinz U (2003) Inorg Chem 42:3516–3526

    CAS  PubMed  Google Scholar 

  32. APEX3 crystallography software suite. Bruker AXS Inc., Madison (2016)

  33. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA, Puschmann H (2009) J Appl Crystallogr 42:339–341

    CAS  Google Scholar 

  34. Sheldrick GM (2015) Acta Crystallogr A 71:3–8

    Google Scholar 

  35. Sheldrick GM (2015) Acta Crystallogr C Struc Chem 71:3–8

    Google Scholar 

  36. Ressler T (1998) J Synchrotron Rad 5:118–122

    CAS  Google Scholar 

  37. Zabinsky SI, Rehr JJ, Ankudinov A, Albers RC, Eller MJ (1995) Phys Rev B 52:2995–3009

    CAS  Google Scholar 

  38. Ankudinov AL, Rehr JJ (1997) Phys Rev B 56:R1712–R1716

    CAS  Google Scholar 

  39. Rimmer RD, Richter H, Ford PC (2010) Inorg Chem 49:1180–1185

    CAS  PubMed  Google Scholar 

  40. Fery-Forgues S, Lavabre D (1999) J Chem Educ 76:1260

    CAS  Google Scholar 

  41. Degen J, Reinecke K, Schmidtke H-H (1992) Chem Phys 162:419–426

    CAS  Google Scholar 

  42. Sabol JE, Rockley MG (1987) J Photochem Photobiol A Chem 40:245–257

    CAS  Google Scholar 

  43. Demas JN, McBride RP, Harris EW (1976) J Phys Chem 80:2248–2253

    CAS  Google Scholar 

  44. Enriquez Garcia A, Lai B, Gopinathan SG, Harris HH, Shemanko CS, Jalilehvand F (2019) Chem Comm 55:8223–8226

    PubMed  Google Scholar 

  45. McRae R, Lai B, Fahrni CJ (2013) Metallomics 5:52–61

    CAS  PubMed  Google Scholar 

  46. McRae R, Lai B, Vogt S, Fahrni CJ (2006) J Struct Biol 155:22–29

    CAS  PubMed  Google Scholar 

  47. Van Epsen P (2002) In: Van Grieken RE, Markowicz AA (eds) Handbook of X-ray spectrometry: methods and techniques. Marcel Dekker Inc., New York, pp 239–339

    Google Scholar 

  48. Vogt S, Maser J, Jacobsen C (2003) J Phys IV 104:617–622

    CAS  Google Scholar 

  49. Vogt S (2003) J Phys IV 104:635–638

    CAS  Google Scholar 

  50. Carter EA, Rayner BS, McLeod AI, Wu LE, Marshall CP, Levina A, Aitken JB, Witting PK, Lai B, Cai Z, Vogt S, Lee YC, Chen CI, Tobin MJ, Harris HH, Lay PA (2010) Mol Biosyst 6:1316–1322

    CAS  PubMed  Google Scholar 

  51. Allen FH (2002) Acta Crystallogr B B58:380–388

    CAS  Google Scholar 

  52. El Nahhas A, van der Veen RM, Penfold TJ, Pham VT, Lima FA, Abela R, Blanco-Rodriguez AM, Záliš S, Vlček A, Tavernelli I, Rothlisberger U, Milne CJ, Chergui M (2013) J Phys Chem A 117:361–369

    PubMed  Google Scholar 

  53. Lobo-Lapidus RJ, Gates BC (2010) Chem Eur J 16:11386–11398

    CAS  PubMed  Google Scholar 

  54. Koeppe RE, Stroud RM (1976) Biochemistry 15:3450–3458

    CAS  PubMed  Google Scholar 

  55. Fuhr BJ, Rabenstein DL (1973) J Am Chem Soc 95:6944–6950

    CAS  PubMed  Google Scholar 

  56. Reitz GA, Dressick WJ, Demas JN, DeGraff BA (1986) J Am Chem Soc 108:5344–5345

    CAS  Google Scholar 

  57. Vlček A (2010) In: Lees AJ (ed) Topics in organometallic chemistry: photophysics of organometallics. Springer, Heidelberg, pp 73–114

    Google Scholar 

  58. Kurz P, Probst B, Spingler B, Alberto R (2006) Eur J Inorg Chem 2006:2966–2974

    Google Scholar 

  59. Giordano PJ, Wrighton MS (1979) J Am Chem Soc 101:2888–2897

    CAS  Google Scholar 

  60. Worl LA, Duesing R, Chen P, Ciana LD, Meyer TJ (1991) J Chem Soc Dalton Trans 849–858

  61. Fernández-Moreira V, Sastre-Martín H (2017) Inorg Chim Acta 460:127–133

    Google Scholar 

  62. Stoyanov SR, Villegas JM, Cruz AJ, Lockyear LL, Reibenspies JH, Rillema DP (2005) J Chem Theory Comput 1:95–106

    PubMed  Google Scholar 

  63. El Nahhas A, Consani C, Blanco-Rodríguez AM, Lancaster KM, Braem O, Cannizzo A, Towrie M, Clark IP, Záliš S, Chergui M (2011) Inorg Chem 50:2932–2943

    PubMed  Google Scholar 

  64. Cannizzo A, Blanco-Rodríguez AM, El-Nahhas A, Šebera J, Záliš S, An V, Chergui M (2008) J Am Chem Soc 130:8967–8974

    CAS  PubMed  Google Scholar 

  65. He M, Ching HV, Policar C, Bertrand HC (2018) New J Chem 42:11312–11323

    CAS  Google Scholar 

  66. Fredericks SM, Luong JC, Wrighton MS (1979) J Am Chem Soc 101:7415–7417

    CAS  Google Scholar 

  67. Ramos LD, da Cruz HM, Frin KPM (2017) Photochem Photobiol Sci 16:459–466

    CAS  PubMed  Google Scholar 

  68. Strukl JS, Walter JL (1971) Spectrochim. Acta A. Mol. Spectrosc 27:209–221

    CAS  Google Scholar 

  69. Wilkinson F, Helman WP, Ross AB (1995) J Phys Chem Ref Data 24:663–677

    CAS  Google Scholar 

  70. Ahmed EA, Omar HM, Elghaffar SKA, Ragb SMM, Nasser AY (2011) Food Chem Toxicol 49:1115–1121

    CAS  PubMed  Google Scholar 

  71. Wang F, Liu S, Shen Y, Zhuang R, Xi J, Fang H, Pan X, Sun J, Cai Z (2014) Exp Ther Med 8:1939–1945

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Rosic G, Selakovic D, Joksimovic J, Srejovic I, Zivkovic V, Tatalović N, Orescanin-Dusic Z, Mitrovic S, Ilic M, Jakovljevic V (2016) Toxicol Lett 242:34–46

    CAS  PubMed  Google Scholar 

  73. Huang S, You J, Wang K, Li Y, Zhang Y, Wei H, Liang X, Liu Y (2019) Biomed Res Int 2019:4805853

    PubMed  PubMed Central  Google Scholar 

  74. Jin Q, Paunesku T, Lai B, Gleber S-C, Chen S, Finney L, Vine D, Vogt S, Woloschak G, Jacobsen C (2017) J Microsc 265:81–93

    CAS  PubMed  Google Scholar 

  75. Sanderson MJ, Smith I, Parker I, Bootman MD (2014) Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.top071795

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kitanovic I, Can S, Alborzinia H, Kitanovic A, Pierroz V, Leonidova A, Pinto A, Spingler B, Ferrari S, Molteni R, Steffen A, Metzler-Nolte N, Wölfl S, Gasser G (2014) Chem Eur J 20:2496–2507

    CAS  PubMed  Google Scholar 

  77. Gasser G, Neumann S, Ott I, Seitz M, Heumann R, Metzler-Nolte N (2011) Eur J Inorg Chem 5471–5478

  78. Wedding JL, Harris HH, Bader CA, Plush SE, Mak R, Massi M, Brooks DA, Lai B, Vogt S, Werrett MV (2017) Metallomics 9:382–390

    CAS  PubMed  Google Scholar 

  79. Obinna CU, Heather MW (2014) Curr Pharm Des 20:201–222

    Google Scholar 

  80. Florea A-M, Büsselberg D (2011) Cancers 3:1351–1371

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Barnham KJ, Djuran MI, Murdoch PdS, Ranford JD, Sadler PJ (1996) Inorg. Chem 35:1065–1072

    CAS  Google Scholar 

  82. Ramachandran E, Senthil Raja D, Bhuvanesh NSP, Natarajan K (2012) Dalton Trans 41:13308–13323

    CAS  PubMed  Google Scholar 

  83. Lukey MJ, Katt WP, Cerione RA (2017) Drug Discov Today 22:796–804

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our sincere appreciation to Mr. Wade White at the instrumentation facility at the Department of Chemistry for his assistance with the ESI–MS measurements, and to Ms. Valerie Brunskill for measuring the 13C and 1H NMR spectra of cysteine and glutathione solutions. A.E.G acknowledges University of Calgary Eyes High, and Faculty of Science Dean’s Open Competitions Doctoral Scholarships. N.M. acknowledges NSERC for an Alexander Graham Bell Canada Graduate Scholarship-Doctoral and Alberta Innovates for a Nanotechnology Doctoral Scholarship. This work was financially supported by the Natural Science and Engineering Research Council of Canada (NSERC), the Canadian Cancer Society, the Canadian Foundation for Innovation (CFI), Department of Innovation and Science of Province of Alberta. X-ray absorption spectra were measured at the Photon Factory (PF; proposal no. 2018G563) and X-ray fluorescence microscopy data were collected at the Advanced Photon Source (APS; proposal no. 53103). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357.

Funding

The following funding is acknowledge: Natural Science and Engineering Research Council of Canada (Grant no. RGPIN 2016-04546 to FJ and RGPIN 2018-04773 to CS), Canadian Cancer Society (Grant no. 300072 to CS); Canadian Foundation for Innovation (Grant no. 9479 to FJ); Department of Innovation and Science of Province of Alberta (Grant to FJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farideh Jalilehvand.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4802 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capper, M.S., Enriquez Garcia, A., Macia, N. et al. Cytotoxicity, cellular localization and photophysical properties of Re(I) tricarbonyl complexes bound to cysteine and its derivatives. J Biol Inorg Chem 25, 759–776 (2020). https://doi.org/10.1007/s00775-020-01798-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-020-01798-9

Keywords

Navigation