Skip to main content
Log in

Model and Analysis of Piezoelectric Actuator in Practical Three-Stage Mechanism

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Piezoelectric elements (PEMs) are used in a variety of applications. In this paper we developed a full analytical model of a piezoelectric actuator which includes piezostack elements and a three-stage amplification mechanism. The model was derived separately for each unit of the system. Next, the units were combined, while taking into account their coupling. The hysteresis phenomenon, which is significant in piezoelectric materials, was extensively described. A number of hysteresis calculating algorithms were investigated and a new simple method of examining piezoelectric hysteresis was demonstrated. The theoretical model was verified in a laboratory setup. This setup includes a piezoelectric actuator, measuring devices and an acquisition system. The measured results were compared to the theoretical results, while taking into account the nonlinear phenomena of the piezoelectric materials and the three-stage amplification mechanism, and were found to be very similar. Due to its simplicity, this model can easily be modified in order to be applied to other PEMs or other amplification mechanism methods. The main novelty of this work lies in its system-level approach for piezoelectric actuators. All of the system elements include non-linear phenomena, which mutually influence each other. First, each part of the system will be described separately and then, the combined subsystems and the coupling between their parts will be represented. Finally we treat this system as one whole unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Preumont. (2006) Mechatronics dynamics of electromechanical and piezoelectric systems. Springer, Chapter 4, (95–130).

  2. Li, Y., Xiao, S., Xi, L., & Wu, Z. (2014). Design, modeling, control and experiment for a 2-DOF compliant micro-motion stage. International Journal of Precision Engineering and Manufacturing, 15(4), 735–744.

    Article  Google Scholar 

  3. Kim, C., & Shin, J. W. (2013). Topology optimization of piezoelectric materials and application to the cantilever beams for vibration energy harvesting. International Journal of Precision Engineering and Manufacturing, 14(11), 1925–1931.

    Article  Google Scholar 

  4. Kim, I., Kim, Y. S., & Park, E. C. (2009). Sliding mode control of the inchworm displacement with hysteresis compensation. International Journal of Precision Engineering and Manufacturing, 10(3), 43–49.

    Article  Google Scholar 

  5. Kim, M. S., Park, Y. J., Cho, K. J., Ahn, S. H., Chu, W. S., Lee, K. T., et al. (2012). Review of biomimetic underwater robots using smart actuators. International Journal of Precision Engineering and Manufacturing, 13(7), 1281–1292.

    Article  Google Scholar 

  6. Ghemari, Z., Saad, S., & Khettab, K. (2019). Improvement of the vibratory diagnostic method by evolution of the piezoelectric sensor performances. International Journal of Precision Engineering and Manufacturing, 20, 1361–1369.

    Article  Google Scholar 

  7. Zhang, X., & Xu, Q. (2018). Design and testing of a New 3-DOF spatial flexure parallel micropositioning stage. International Journal of Precision Engineering and Manufacturing, 19(1), 109–118.

    Article  Google Scholar 

  8. McCarty, R., & Mahmoodi, S. N. (2015). Dynamic mulitmode analysis of non-linear piezoelectric microcantilever probe in bistable region of tapping mode atomic force microscopy. International Journal of Non-Linear Mechanics, 74, 25–37.

    Article  Google Scholar 

  9. Dong, W., Chen, F., Li, H., Yang, M., & Du, Z. (2017). A two-dimensional nano-positioner: Design, modelling and experiments. Robotics and Computer-Integrated Manufacturing, 48, 167–173.

    Article  Google Scholar 

  10. Guo, L., Yan, W., Xu, Y., & Chen, Y. (2012). Valveless piezoelectric micropump of parallel double chambers. International Journal of Precision Engineering and Manufacturing, 13(5), 771–776.

    Article  Google Scholar 

  11. Zhenming, L., Pei, J., Guangyao, O., & Jiadong, Z. (2010). Development of an electromechanical model for piezo actuated common rail injectors. International Conference on Intelligent Computation Technology and Automation, 2, 98–101.

    Article  Google Scholar 

  12. Muir, E. R., Liu, L., Friedmann, P. P., & Kumar, D. (2012). Effect of piezoelectric actuator hysteresis on helicopter vibration and noise reduction. Journal of Guidance, Control and Dynamics, 35(4), 1299–1311.

    Article  Google Scholar 

  13. Zanoni, C., & Bortoluzzi, D. (2015). Experimental-analytical qualification of a piezoelectric mechanism for a critical space application. IEEE Transactions on Mechatronics, 20(1), 427–437.

    Article  Google Scholar 

  14. Kurniawan, R., Ali, S., Park, K. M., Li, C. P., & Ko, T. J. (2019). Development of a three-dimensional ultrasonic elliptical vibration transducer (3D-UEVT) based on sandwiched piezoelectric actuator for micro-grooving. International Journal of Precision Engineering and Manufacturing, 20, 1229–1240.

    Article  Google Scholar 

  15. Kim, J., Lee, H., & Kim, H. S. (2010). Beam vibration control using cellulose-based electro-active paper sensor. International Journal of Precision Engineering and Manufacturing, 11(6), 823–827.

    Article  Google Scholar 

  16. Yun, J. N., Sun, J. B., & Kim, Y. C. (2013). Robust disturbance observer for twoinertia system. IEEE Transactions on Industrial Electronics, 60(7), 2700–2710.

    Article  Google Scholar 

  17. Kanno, I., Kunisawa, T., Suzuki, T., & Kotera, H. (2007). Development of deformable mirror composed of piezoelectric thin films for adaptive optics. IEEE Journal of Selected Topics in Quantum Electronics, 13(2), 155–161.

    Article  Google Scholar 

  18. S.E. NIV, D.A. Levy, D. Oster. (2013). Integrated model and analysis of a pneumatic piezoelectric actuator. in 53th Israel Annual Conference on Aerospace Science.

  19. Ben-Yaakov, S., & Lineykin, S. (2004). Maximum power tracking of piezoelectric transformer HV converters under load variations. IEEE Transactions on Power Electronics, 21(1), 73–78.

    Article  Google Scholar 

  20. Lineykin, S., & Ben-Yaakov, S. (2005). Feedback isolation by piezoelectric transformers: comparison of amplitude to frequency modulation. HAIT Journal of Science and Engineering, 2(5–6), 830–847.

    Google Scholar 

  21. T. Jordan, Z. Ounaies, J. Tripp, P. Tcheng. (2000). Electrical properties and power considerations of a piezoelectric actuator. ICASE Report. no. 2000–8.

  22. Rakotondrabe, M., Haddab, Y., & Lutz, P. (2009). Quadrilateral modelling and robust control of a nonlinear piezoelectric cantilever. IEEE Transactions on control systems technology, 17(3), 528–539.

    Article  Google Scholar 

  23. Q. Zhou, P. Kallio, H. N. Koivo. (1999) Modeling of piezohydraulic actuator for control of a parallel micromanipulator. in Proceedings of the 1999 IEEE International conference on robotics and automation. Michigan.

  24. Zupan, M., Ashby, M. F., & Fleck, N. A. (2002). Actuator classification and selection-the development of a database. Advanced Engineering Materials, 4(12), 933–940.

    Article  Google Scholar 

  25. Richter, H., Misawa, E. A., Lucca, D. A., & Lu, H. (2001). Modeling nonlinear behavior in a piezoelectric actuator. Journal of the International Societies for Precision Engineering and Nanotechnology, 25, 128–137.

    Google Scholar 

  26. Pozzi, M., & King, T. (2003). Piezoelectric modelling for an impact actuator. Mechatronics, 13(6), 553–570.

    Article  Google Scholar 

  27. Karunanidhi, S., & Singaperumal, M. (2010). Mathematical modelling and experimental characterization of a high dynamic servo valve integrated with piezoelectric actuator. Proceedings of The Institution of Mechanical Engineers Part I-journal of Systems and Control Engineering, 224(4), 419–435.

    Google Scholar 

  28. Boukari, A. F., Carmona, J. C., Moraru, G., Malburet, F., Chaaba, A., & Douimi, M. (2011). Piezo-actuators modeling for smart applications. Mechatronics, 21, 339–349.

    Article  Google Scholar 

  29. Ch, S. H. (2009). Trajectory tracking control of a pneumatic XY table using neural network based PID control. International Journal of Precision Engineering and Manufacturing, 10(5), 37–44.

    Article  Google Scholar 

  30. Huang, D., Xu, J. X., Venkataramanan, V., & Huynh, T. C. T. (2014). High-performance tracking of piezoelectric positioning stage using current-cycle iterative learning control with gain scheduling. IEEE Transactions on Industrial Electronics, 61(2), 1085–1098.

    Article  Google Scholar 

  31. Campolo, D., Sitti, M., & Fearing, R. S. (2003). Efficient charge recovery method for driving piezoelectric actuators with quasi-square waves. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 50(3), 237–244.

    Article  Google Scholar 

  32. Goldfarb, M., & Celanovic, N. (1997). Modeling piezoelectric stack actuators for control of micromanipulation. IEEE Transactions on Control Systems, 17(3), 69–79.

    Article  MATH  Google Scholar 

  33. https://www.pi-usa.us/en/products/piezo-motors-stages-actuators/piezo-motion-control-tutorial/tutorial-4-16. Accessed 10 June 2020.

  34. (2005). “Designing with Piezoelectric Transducers: Nanopositioning Fundamentals”. Available http://www.pi.ws. Accessed 10 June 2020.

  35. Kuhnen, K., & Krejci, P. (2009). Compensation of complex hysteresis and creep effects in piezoelectrically actuated systems—A new Preisach modeling approach. IEEE Transactions on Automation Control, 54(3), 537–550.

    Article  MathSciNet  MATH  Google Scholar 

  36. Nguyen, P. B., & Choi, S. B. (2011). Micro-position control of a piezostack actuator using rate-dependent hysteretic compensator. International Journal of Precision Engineering and Manufacturing, 12(5), 885–891.

    Article  Google Scholar 

  37. Villegas, F., Hecker, R. L., & Peña, M. (2016). Two-state GMS-based friction model for precise control applications. International Journal of Precision Engineering and Manufacturing, 17(5), 553–564.

    Article  Google Scholar 

  38. K. Kuhnen, H. Janocha. (1999). Adaptive inverse control of piezoelectric actuators with hysteresis operators. in Proceedings of the European control conference ECC99, Karlsruhe, Germany, 1–6.

  39. Rosenbaum, S., Ruderman, M., Strohla, T., & Bertram, T. (2010). Use of Jiles-Atherton and Preisach hysteresis models for inverse feed-forward control. IEEE Transactions on Magnetics, 46(12), 3984–3989.

    Article  Google Scholar 

  40. Song, G., Zhao, J. Q., Zhou, X. Q., & de Abreu-Garcia, J. A. (2005). Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model. IEEE/ASME Transactions on Mechatronics, 10(2), 198–209.

    Article  Google Scholar 

  41. Iyer, R., & Tan, X. (2009). Control of hysteretic systems through inverse compensation. IEEE Control Systems Magnetics, 29(1), 83–99.

    Article  MathSciNet  MATH  Google Scholar 

  42. Sivaselvan, M. V. (2013). Hysteretic models with stiffness and strength degradation in a mathematical programming format. International Journal of Non-Linear Mechanics, 51, 10–27.

    Article  Google Scholar 

  43. Ming, M., Ling, J., Feng, Z., & Xiao, X. (2018). A model prediction control design for inverse multiplicative structure based feedforward hysteresis compensation of a piezo nanopositioning stage. International Journal of Precision Engineering and Manufacturing, 19(11), 1699–1708.

    Article  Google Scholar 

  44. Dong, R., & Tan, Y. (2009). A modified Prandtl-Ishlinskii modeling method for hysteresis. Physica B: Condensed Matter, 404(8–11), 1336–1342.

    Article  Google Scholar 

  45. Jiang, H., Ji, H., Qiu, J., & Chen, Y. (2010). A modified Prandtl-Ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 57(5), 1200–1210.

    Article  Google Scholar 

  46. Pickelmann, L. (2006). “Low voltage co-fired multilayer stacks, rings and chips for actuation”. Piezomechanik GmbH., p. 23. Available https://www.piezomechanik.com/en/products/. Accessed 10 June 2020.

  47. Lining, S., Changhai, R., Weibin, R., Liguo, C., & Minxiu, K. (2004). Tracking control of piezoelectric actuator based on a new mathematical model. Journal of Micromechanics and Microengineering, 12, 1439–1444.

    Article  Google Scholar 

  48. S. Eliahou-Niv, M. Tsabari, D. Bar-Anan, D. Oster. (2010). Design validation and testing of a piezoelectric mechanism. in Proceedings of the 50th Israel Annual Conference on Aerospace Sciences, Tel-Aviv, Israel.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dror A. Levy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levy, D.A., Shapiro, A. Model and Analysis of Piezoelectric Actuator in Practical Three-Stage Mechanism. Int. J. Precis. Eng. Manuf. 21, 1717–1728 (2020). https://doi.org/10.1007/s12541-020-00369-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-020-00369-x

Keywords

Navigation