Skip to main content

Advertisement

Log in

Relationships among breeding site characteristics and adult population size of the fire salamander, Salamandra infraimmaculata

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Effective amphibian conservation requires knowledge of both the aquatic and terrestrial phases of life. As extinction probabilities are a function of population size, it is crucial not only to understand the habitat requirement of the species but also to estimate its population size. In this work, we studied the endangered fire salamander, Salamandra infraimmaculata, and analyzed the population size at a total of 14 sites—eight temporary and six permanent. For identifying the local and landscape scales factors predicting S. infraimmaculata’s breeding sites we monitored 54 aquatic sites. We found that permanent sites support larger populations of adult salamanders. The breeding site characteristics analyses revealed that at the local scale water depth and shade were the most important factors and two regional variables were found to be important: proximity to another breeding site and elevation. This work provides two clear conservation implications permanent breeding sites will support much larger populations compared to temporary sites, particularly if close to other potential breeding sites, and both terrestrial and aquatic features are important for a site to be suitable for breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altwegg, R. & H.-U. Reyer, 2003. Patterns of natural selection on size at metamorphosis in water frogs. Evolution 57: 872–882.

    Article  PubMed  Google Scholar 

  • Álvarez, D., A. Lourenço, D. Oro & G. Velo-Antón, 2015. Assessment of census (N) and effective population size (N e) reveals consistency of N e single-sample estimators and a high N e/N ratio in an urban and isolated population of fire salamanders. Conservation genetics resources 7: 705–712.

    Article  Google Scholar 

  • Bar-David, S., O. Segev, N. Peleg, N. Hill, A. R. Templeton, C. B. Schultz & L. Blaustein, 2007. Long-distance movements by fire salamanders (Salamandra infraimmaculata) and implications for habitat fragmentation. Israel Journal of Ecology & Evolution 53: 143–159.

    Article  Google Scholar 

  • Beja, P. & R. Alcazar, 2003. Conservation of Mediterranean temporary ponds under agricultural intensification: an evaluation using amphibians. Biological Conservation 114: 317–326.

    Article  Google Scholar 

  • Blank, L. & L. Blaustein, 2012. Using ecological niche modeling to predict the distributions of two endangered amphibian species in aquatic breeding sites. Hydrobiologia 693: 157–167.

    Article  Google Scholar 

  • Blank, L. & L. Blaustein, 2014. A multi-scale analysis of breeding site characteristics of the endangered fire salamander (Salamandra infraimmaculata) at its extreme southern range limit. Hydrobiologia 726: 1–16.

    Article  Google Scholar 

  • Blank, L., R. Linker & Y. Carmel, 2013a. A multiscale analysis of herbaceous species richness in a Mediterranean ecosystem. Journal of Plant Ecology 6: 113–121.

    Article  Google Scholar 

  • Blank, L., M. Luoto & J. Merilä, 2013b. Potential effects of climate change on the distribution of the common frog Rana temporaria at its northern range margin. Israel Journal of Ecology & Evolution 59: 130–140.

    Article  Google Scholar 

  • Blank, L., I. Sinai, S. Bar-David, N. Peleg, O. Segev, A. Sadeh, N. M. Kopelman, A. R. Templeton, J. Merilä & L. Blaustein, 2013c. Genetic population structure of the endangered fire salamander (Salamandra infraimmaculata) at the southernmost extreme of its distribution. Animal Conservation 16: 412–421.

    Article  Google Scholar 

  • Blank, L., J. Martín-García, D. Bezos, A. M. Vettraino, H. Krasnov, J. M. Lomba, M. Fernández & J. J. Diez, 2019. Factors affecting the distribution of pine pitch canker in northern Spain. Forests 10: 305.

    Article  Google Scholar 

  • Blaustein, A. R. & D. B. Wake, 1990. Declining amphibian populations: a global phenomenon? Trends in Ecology & Evolution 5: 203–204.

    Article  Google Scholar 

  • Blaustein, A. R., D. B. Wake & W. P. Sousa, 1994. Amphibian declines: judging stability, persistence, and susceptibility of populations to local and global extinctions. Conservation biology 8: 60–71.

    Article  Google Scholar 

  • Blaustein, L., J. E. Garb, D. Shebitz & E. Nevo, 1999. Microclimate, developmental plasticity and community structure in artificial temporary pools. Hydrobiologia 392: 187–196.

    Article  Google Scholar 

  • Bogaerts, S., M. Sparreboom, F. Pasmans, A. Almasri, W. Beukema, A. Shehab & Z. S. Amr, 2013. Distribution, ecology and conservation of Ommatotriton vittatus and Salamandra infraimmaculata in Syria. Salamandra 49: 87–96.

    Google Scholar 

  • Bradford, D. F., A. C. Neale, M. S. Nash, D. W. Sada & J. R. Jaeger, 2003. Habitat patch occupancy by toads (Bufo punctatus) in a naturally fragmented desert landscape. Ecology 84: 1012–1023.

    Article  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York.

    Google Scholar 

  • Cahill, A. E., M. E. Aiello-Lammens, M. C. Fisher-Reid, X. Hua, C. J. Karanewsky, H. Yeong Ryu, G. C. Sbeglia, F. Spagnolo, J. B. Waldron & O. Warsi, 2013. How does climate change cause extinction? Proceedings of the Royal Society B: Biological Sciences 280: 20121890.

    Article  PubMed  Google Scholar 

  • Calcagno, V. & C. de Mazancourt, 2010. glmulti: an R package for easy automated model selection with (generalized) linear models. Journal of Statistical Software 34: 1–29.

    Article  Google Scholar 

  • Caruso, N. M. & K. R. Lips, 2013. Truly enigmatic declines in terrestrial salamander populations in Great Smoky Mountains National Prk. Diversity and Distributions 19: 38–48.

    Article  Google Scholar 

  • Caughley, G., 1994. Directions in conservation biology. Journal of Animal Ecology 63: 215–244.

    Article  Google Scholar 

  • Chao, A., S. M. Lee & S. L. Jeng, 1992. Estimating population size for capture-recapture data when capture probabilities vary by time and individual animal. Biometrics 48: 201–216.

    Article  CAS  PubMed  Google Scholar 

  • Cushman, S. A., 2006. Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biological conservation 128: 231–240.

    Article  Google Scholar 

  • Cushman, S. A., K. S. McKelvey, J. Hayden & M. K. Schwartz, 2006. Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. The American Naturalist 168: 486–499.

    Article  PubMed  Google Scholar 

  • Degani, G., 1996. Salamandra at that Southern Limit of Its Distribution. Laser Pages Publishing, Jerusalem, Israel.

    Google Scholar 

  • Degani, G., 2016. Cannibalism, among other solutions of adaption, in habitats where food is not Available for Salamandra infraimmaculata larvae diet in breeding places in xeric habitats. Open Journal of Animal Sciences 6: 31.

    Article  Google Scholar 

  • Denoël, M. & G. F. Ficetola, 2008. Conservation of newt guilds in an agricultural landscape of Belgium: the importance of aquatic and terrestrial habitats. Aquatic Conservation: Marine and Freshwater Ecosystems 18: 714–728.

    Article  Google Scholar 

  • Dolev, A. & A. Perevolotsky, 2004. The Red Book: Vertebrates in Israel. Israel Nature and Parks Authority, Jerusalem.

    Google Scholar 

  • Dorchin, A. & U. Shanas, 2010. Assessment of pollution in road runoff using a Bufo viridis biological assay. Environmental Pollution Elsevier 158: 3626–3633.

    Article  CAS  Google Scholar 

  • Eitam, A., L. Blaustein & M. Mangel, 2005. Density and intercohort priority effects on larval Salamandra salamandra in temporary pools. Oecologia 146: 36–42.

    Article  PubMed  Google Scholar 

  • Fahrig, L. & T. Rytwinski, 2009. Effects of roads on animal abundance: an empirical review and synthesis. Ecology and society 14(1):21.

    Article  Google Scholar 

  • Fox, J., S. Weisberg, D. Adler, D. Bates, G. Baud-Bovy, S. Ellison, D. Firth, M. Friendly, G. Gorjanc & S. Graves, 2012. Package ‘car’. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Garriga, N., X. Santos, A. Montori, A. Richter-Boix, M. Franch & G. A. Llorente, 2012. Are protected areas truly protected? The impact of road traffic on vertebrate fauna. Biodiversity and Conservation 21: 2761–2774.

    Article  Google Scholar 

  • Gaston, K. J., 2003. The Structure and Dynamics of Geographic Ranges. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Givati, A. & D. Rosenfeld, 2013. The Arctic Oscillation, climate change and the effects on precipitation in Israel. Atmospheric research 132: 114–124.

    Article  Google Scholar 

  • Haan, S. S., M. J. Desmond, W. R. Gould & J. P. Ward, 2007. Influence of habitat characteristics on detected site occupancy of the New Mexico endemic Sacramento Mountains salamander, Aneides hardii. Journal of Herpetology 41: 1–9.

    Article  Google Scholar 

  • Hampe, A. & R. J. Petit, 2005. Conserving biodiversity under climate change: the rear edge matters. Ecology Letters 8: 461–467.

    Article  PubMed  Google Scholar 

  • Harless, M. L., C. J. Huckins, J. B. Grant & T. G. Pypker, 2011. Effects of six chemical deicers on larval wood frogs (Rana sylvatica). Environmental Toxicology and Chemistry 30: 1637–1641.

    Article  CAS  PubMed  Google Scholar 

  • IUCN, 2018. IUCN Red List maps. Explore and Discover Red List Species Ranges and Observations. http://maps.iucnredlist.org/index.html.

  • Joly, P., C. Miaud, A. Lehmann & O. Grolet, 2001. Habitat matrix effects on pond occupancy in newts. Conservation Biology 15: 239–248.

    Article  Google Scholar 

  • Kershenbaum, A., L. Blank, I. Sinai, J. Merilä, L. Blaustein & A. R. Templeton, 2014. Landscape influences on dispersal behaviour: a theoretical model and empirical test using the fire salamander, Salamandra infraimmaculata. Oecologia 175: 509–520.

    Article  PubMed  Google Scholar 

  • Knutson, M. G., J. R. Sauer, D. A. Olsen, M. J. Mossman, L. M. Hemesath & M. J. Lannoo, 1999. Effects of landscape composition and wetland fragmentation on frog and toad abundance and species richness in Iowa and Wisconsin, USA. Conservation Biology 13: 1437–1446.

    Article  Google Scholar 

  • Krasnov, H., Y. Cohen, E. Goldshtein, O. Mendelsohn, M. Silberstein, Y. Gazit & L. Blank, 2019. The effect of local and landscape variables on Mediterranean fruit fly dynamics in citrus orchards utilizing the ecoinformatics approach. Journal of Pest Science 92: 453–463.

    Article  Google Scholar 

  • Kruskal, W. H. & W. A. Wallis, 1952. Use of ranks in one-criterion variance analysis. Journal of the American statistical Association Taylor & Francis Group 47: 583–621.

    Article  Google Scholar 

  • Manenti, R., F. De Bernardi & G. F. Ficetola, 2009. Water, stream morphology and landscape: complex habitat determinants for the fire salamander Salamandra salamandra. Amphibia-Reptilia 30: 7–15.

    Article  Google Scholar 

  • Marsh, D., 2008. Metapopulation viability analysis for amphibians. Animal Conservation 11: 463–465.

    Article  Google Scholar 

  • Marsh, D. M., G. S. Milam, N. P. Gorham & N. G. Beckman, 2005. Forest roads as partial barriers to terrestrial salamander movement. Conservation biology 19: 2004–2008.

    Article  Google Scholar 

  • Mazerolle, M. J., 2004. Amphibian road mortality in response to nightly variations in traffic intensity. Herpetologica 60: 45–53.

    Article  Google Scholar 

  • Milanovich, J. R., W. E. Peterman, N. P. Nibbelink & J. C. Maerz, 2010. Projected loss of a salamander diversity hotspot as a consequence of projected global climate change. PLoS One 5: e12189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagelkerke, N. J., 1991. A note on a general definition of the coefficient of determination. Biometrika 78: 691–692.

    Article  Google Scholar 

  • Neter, J., W. Wasserman & M. H. Kutner, 1989. Applied Linear Regression Models. Richard D. Irwin Inc, Homewood.

    Google Scholar 

  • Pearson, R. G., J. C. Stanton, K. T. Shoemaker, M. E. Aiello-Lammens, P. J. Ersts, N. Horning, D. A. Fordham, C. J. Raxworthy, H. Y. Ryu & J. McNees, 2014. Life history and spatial traits predict extinction risk due to climate change. Nature Climate Change 4: 217.

    Article  Google Scholar 

  • Peterman, W. E. & R. D. Semlitsch, 2013. Fine-scale habitat associations of a terrestrial salamander: the role of environmental gradients and implications for population dynamics. PLoS One 8: e62184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petranka, J. W., 2007. Evolution of complex life cycles of amphibians: bridging the gap between metapopulation dynamics and life history evolution. Evolutionary Ecology 21: 751–764.

    Article  Google Scholar 

  • Pineda, E. & G. Halffter, 2004. Species diversity and habitat fragmentation: frogs in a tropical montane landscape in Mexico. Biological conservation 117: 499–508.

    Article  Google Scholar 

  • Ray, N., A. Lehmann & P. Joly, 2002. Modeling spatial distribution of amphibian populations: a GIS approach based on habitat matrix permeability. Biodiversity & Conservation 11: 2143–2165.

    Article  Google Scholar 

  • Roy, D. P., M. A. Wulder, T. R. Loveland, C. E. Woodcock, R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson & R. Kennedy, 2014. Landsat-8: science and product vision for terrestrial global change research. Remote sensing of Environment 145: 154–172.

    Article  Google Scholar 

  • Sadeh, A., N. Truskanov, M. Mangel & L. Blaustein, 2011. Compensatory development and costs of plasticity: larval responses to desiccated conspecifics. PLoS ONE 6: e15602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt, B. R. & S. Zumbach, 2008. Amphibian road mortality and how to prevent it: a review. Urban Herpetology 3: 157–167.

    Google Scholar 

  • Segev, O., N. Hill, A. R. Templeton & L. Blaustein, 2010. Population size, structure and phenology of an endangered salamander at temporary and permanent breeding sites. Journal for Nature Conservation 18: 189–195.

    Article  Google Scholar 

  • Segev, O., M. Mangel, N. Wolf, A. Sadeh, A. Kershenbaum & L. Blaustein, 2011. Spatiotemporal reproductive strategies in the fire salamander: a model and empirical test. Behavioral Ecology 22: 670–678.

    Article  Google Scholar 

  • Sinai, I., O. Segev, G. Weil, T. Oron, J. Merilä, A. R. Templeton, L. Blaustein, G. Greenbaum & L. Blank, 2019. The role of landscape and history on the genetic structure of peripheral populations of the Near Eastern fire salamander, Salamandra infraimmaculata, in Northern Israel. Conservation Genetics 20: 875–889.

    Article  CAS  Google Scholar 

  • Skelly, D. K., M. A. Halverson, L. K. Freidenburg & M. C. Urban, 2005. Canopy closure and amphibian diversity in forested wetlands. Wetlands Ecology and Management 13: 261–268.

    Article  Google Scholar 

  • Smith, M. A. & M. D. Green, 2005. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28: 110–128.

    Article  Google Scholar 

  • Steinfartz, S., M. Veith & D. Tautz, 2000. Mitochondrial sequence analysis of Salamandra taxa suggests old splits of major lineages and postglacial recolonizations of Central Europe from distinct source populations of Salamandra salamandra. Molecular Ecology 9: 397–410.

    Article  CAS  PubMed  Google Scholar 

  • Sutton, W., K. Barrett, A. Moody, C. Loftin, P. deMaynadier & P. Nanjappa, 2015. Predicted changes in climatic niche and climate refugia of conservation priority salamander species in the Northeastern United States. Forests 6: 1–26.

    Article  Google Scholar 

  • Templeton, A. R., H. Brazeal & J. L. Neuwald, 2011. The transition from isolated patches to a metapopulation in the eastern collared lizard in response to prescribed fires. Ecology Wiley Online Library 92: 1736–1747.

    Google Scholar 

  • Van Buskirk, J. & M. Arioli, 2005. Habitat specialization and adaptive phenotypic divergence of anuran populations. Journal of Evolutionary Biology 18: 596–608.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by ISF Grant 961-2008 awarded to Leon Blaustein, German-Israel Project Grant BL 1271/1-1 und STE 1130/8-1 awarded to Leon Blaustein, Sebastian Steinfartz, Arne Nolte and Alan Templeton. The Field collection of salamanders, experimentation, and their release were conducted according to the Nature and Parks Authority permit 2015/41180 and with accordance to the guidelines of the Animal Experimentation Ethics Committee at Haifa University permit number 033_b9947_6. We thank Antonina Polevikove and Shi Koren for her help with the field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iftah Sinai.

Additional information

Handling editor: Lee B. Kats

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinai, I., Segev, O., Koplovich, A. et al. Relationships among breeding site characteristics and adult population size of the fire salamander, Salamandra infraimmaculata. Hydrobiologia 847, 2999–3012 (2020). https://doi.org/10.1007/s10750-020-04302-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04302-1

Keywords

Navigation