Skip to main content
Log in

Strategies for Producing Improved Oxygen Barrier Materials Appropriate for the Food Packaging Sector

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Flexible and transparent polymeric and bio-polymeric “super barrier” packaging materials have become increasingly important in recent years especially for oxygen-sensitive foods packaging. Different approaches and emerging technologies have been applied in order to improve oxygen barrier properties which can extend the shelf life and maintain the quality and freshness of food products during their determined shelf life. In this review, we summarize the diverse strategies for manufacturing improved oxygen barrier materials including: incorporation of nanoparticles into polymer matrix, fabrication of multilayer polymer, creation of new barrier methods such as development of crystals in polymer matrix, and cross-linking technique. The structure, preparation, and gas barrier properties of obtained polymers via mentioned approaches are discussed in general along with detailed examples drawn from the scientific literature.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BOPP:

Biaxially oriented polypropylene

BPEI:

Branched poly(ethylenimine)

C-CNCW:

carboxylated cellulose nano crystal whisker

CF:

Carbon fiber

CH:

Chitosan

CNW:

Cellulose nanowhiskers

COC:

Cyclic olefin copolymer

CR:

Carrageenan

DA-GO:

Dodecyl amine-functionalized graphene oxide

DA-RGO:

Dodecyl amine-functionalized reduced graphene oxide

EP:

Epoxy resin

EPDM:

Ethylene–propylene–diene rubber

EVA:

Ethylene-vinyl acetate

EVOH:

Ethylene vinyl alcohol

FTIR:

Fourier transform infrared spectroscopy

GNPs:

Graphite nanoplatelets

GO:

Graphene oxide

GONS:

Graphene oxide nanosheet

HDPE:

High density polyethylene

HEC:

Hydroxyethyl cellulose

ICN:

n-Octadecyl isocyanate

IIR:

Poly (isobutylene- isoprene) rubber

LAP:

Laponite

LCP:

Liquid-crystal polymer

LDPE:

Low density polyethylene

Li-Hec:

Lithium fluoro-hectorite

LLDPE:

Linear low density polyethylene

MMT:

Montmorillonite

MXD6:

Poly(m-xylylene adipamide)

Nafion:

hydrophobic fluorinated polymer

NFC:

Nanofibrillated cellulose

O-MMT:

Organo-modified montmorillonite

OPP:

Oriented polypropylene

O-VER:

Organo-vermiculite

PA:

polyamide

PAA:

Poly(acrylic acid)

PAAm:

Poly(allyl amine)

PAH:

Poly(allyl amine hydrochloride)

PAI:

Poly(amide-imide)

PAM:

Polyacrylamide

PAN:

Polyacrylonitrile

PC:

Polycarbonate

PCL:

Polycaprolactone

PEI:

Polyethylenimine

PEN:

Polyethylene naphthalate

PEO:

Polyethylene oxide

PET:

Polyethylene terephthalate

PETG:

Polyethylene terephthalate glycol

PGD:

Polyglycidol

phr:

Weight parts per 100 weight parts polymer

PHB:

Polyhydroxyalkanoate

PI:

polyimide

PLA:

Poly lactic acid

PP:

Polypropylene

PS:

polystyrene

PSS:

Polystyrene sulfonate

PU:

polyurethane

PVA or PVOH:

Polyvinyl alcohol

PVAm:

Polyvinylamine

PVC:

Polyvinyl chloride

PVDC:

Poly (vinylidine) chloride

PVP:

Polyvinylpyrrolidone

PUR:

Polyurethane

RGO:

Reduced graphene oxide

RH:

Relative humidity

SBR:

Styrene butadiene rubber

VAC:

Vinyl acetate

VMT:

Vermiculite

XG:

Xyloglucan

XNBR:

Carboxylated acrylonitrile butadiene rubber

References

  1. Ali NA, Noori FTM (2014) Gas barrier properties of biodegradable polymer nanocomposites films. Chem Mater Res 6(1)

  2. Apaydin K, Laachachi A, Ball V, Jimenez M, Bourbigot S, Toniazzo V, Ruch D (2013) Polyallylamine–montmorillonite as super flame retardant coating assemblies by layer-by layer deposition on polyamide. Polym Degrad Stab 98(2):627–634. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2012.11.006

    Article  CAS  Google Scholar 

  3. Apicella A, Scarfato P, Di Maio L, Incarnato L (2018) Transport properties of multilayer active PET films with different layers configuration. React Funct Polym 127:29–37

    CAS  Google Scholar 

  4. Ariga K, Hill J (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 9(19):2319–2340 Retrieved from https://pubs.rsc.org/en/content/articlehtml/2007/cp/b700410a

    CAS  PubMed  Google Scholar 

  5. Arrieta MP, Peponi L, López D, López J, Kenny JM (2017) An overview of nanoparticles role in the improvement of barrier properties of bioplastics for food packaging applications. In Food Packaging (pp. 391–424). Elsevier

  6. Arunvisut S, Phummanee S, Somwangthanaroj A (2007) Effect of clay on mechanical and gas barrier properties of blown film LDPE/clay nanocomposites. J Appl Polym Sci 106(4):2210–2217

    CAS  Google Scholar 

  7. Aulin C, Karabulut E, Tran A, Waìšgberg L, Lindström T (2013) Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties. ACS Appl Mater Interfaces 5(15):7352–7359. https://doi.org/10.1021/am401700n

    Article  CAS  PubMed  Google Scholar 

  8. Azeredo HMC, Waldron KW (2016) Crosslinking in polysaccharide and protein films and coatings for food contact--A review. Trends Food Sci Technol 52:109–122

    CAS  Google Scholar 

  9. Bang G, Kim S (2012) Biodegradable poly (lactic acid)-based hybrid coating materials for food packaging films with gas barrier properties. J Ind Eng Chem 18:1063–1068 Retrieved from https://www.sciencedirect.com/science/article/pii/S1226086X11003650

    CAS  Google Scholar 

  10. Bharadwaj RK, Mehrabi AR, Hamilton C, Trujillo C, Murga M, Fan R, Chavira A, Thompson AK (2002) Structure-property relationships in cross-linked polyesterclay nanocomposites. Polymer 43(13):3699–3705

    CAS  Google Scholar 

  11. Bhattacharya M, Biswas S, Bhowmick AK (2011) Permeation characteristics and modeling of barrier properties of multifunctional rubber nanocomposites. Polymer 52(7):1562–1576

    CAS  Google Scholar 

  12. Bikiaris DN, Triantafyllidis KS (2013) HDPE/Cu-nanofiber nanocomposites with enhanced antibacterial and oxygen barrier properties appropriate for food packaging applications. Mater Lett 93:1–4. https://doi.org/10.1016/j.matlet.2012.10.128

    Article  CAS  Google Scholar 

  13. Brockgreitens J, Abbas A (2016) Responsive food packaging: Recent progress and technological prospects. Compr Rev Food Sci Food Saf 15(1):3–15

  14. Bugnicourt E, Schmid M, Nerney OM, Wildner J, Smykala L, Lazzeri A, Cinelli P (2013) Processing and validation of whey-protein-coated films and laminates at semi-industrial scale as novel recyclable food packaging materials with excellent barrier properties. Adv Mater Sci Eng 2013:2013–2010. https://doi.org/10.1155/2013/496207

    Article  CAS  Google Scholar 

  15. Calva-Estrada SJ, Jiménez-Fernández M, Lugo-Cervantes E (2019) Protein-based films: advances in the development of biomaterials applicable to food packaging. Food Eng Rev 11(2):78–92

    CAS  Google Scholar 

  16. Cao L, Ge T, Meng F, Xu S, Li J, Wang L (2020) An edible oil packaging film with improved barrier properties and heat sealability from cassia gum incorporating carboxylated cellulose nano crystal whisker. Food Hydrocoll 98:105251

    CAS  Google Scholar 

  17. Carosio F, Colonna S, Fina A, Rydzek G, Hemmerlé J, Jierry L, Schaaf P, Boulmedais F (2014) Efficient gas and water vapor barrier properties of thin poly(lactic acid) packaging films: functionalization with moisture resistant Nafion and clay multilayers. Chem Mater 26(19):5459–5466. https://doi.org/10.1021/cm501359e

    Article  CAS  Google Scholar 

  18. Carvalho JWC, Sarantópoulos C, Innocentini-Mei LH (2010) Nanocomposites-based polyolefins as alternative to improve barrier properties. J Appl Polym Sci 118(6):3695–3700. https://doi.org/10.1002/app.32507

    Article  CAS  Google Scholar 

  19. Chaiko DJ, Leyva AA (2005) Thermal transitions and barrier properties of olefinic nanocomposites. Chem Mater 17(1):13–19

    CAS  Google Scholar 

  20. Chemin M, Heux L, Guérin D, Crowther-Alwyn L, Jean B (2019) Hybrid gibbsite nanoplatelets/cellulose nanocrystals multilayered films coatings for oxygen barrier improvement. Front Chem 7:507

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen J, Fu Y, An Q, Lo S, Huang S, Hung W (2013) Tuning nanostructure of graphene oxide/polyelectrolyte LbL assemblies by controlling pH of GO suspension to fabricate transparent and super gas barrier films. Nanoscale. Retrieved from https://pubs.rsc.org/en/content/articlehtml/2013/nr/c3nr02845c

  22. Chen J-T, Fu Y-J, An Q-F, Lo S-C, Zhong Y-Z, Hu C-C, Lee KR, Lai J-Y (2014a) Enhancing polymer/graphene oxide gas barrier film properties by introducing new crystals. Carbon 75:443–451. https://doi.org/10.1016/J.CARBON.2014.04.024

    Article  CAS  Google Scholar 

  23. Cheng S, Zhang Y, Cha R, Yang J, Jiang X (2016) Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties. Nanoscale 8(2):973–978. https://doi.org/10.1039/c5nr07647a

    Article  CAS  PubMed  Google Scholar 

  24. Chi K, Catchmark JM (2018) Improved eco-friendly barrier materials based on crystalline nanocellulose/chitosan/carboxymethyl cellulose polyelectrolyte complexes. Food Hydrocoll 80:195–205

    CAS  Google Scholar 

  25. Ciannamea EM, Castillo LA, Barbosa SE, De Angelis MG (2018) Barrier properties and mechanical strength of bio-renewable, heat-sealable films based on gelatin, glycerol and soybean oil for sustainable food packaging. React Funct Polym 125:29–36. https://doi.org/10.1016/j.reactfunctpolym.2018.02.001

    Article  CAS  Google Scholar 

  26. Cirillo G, Curcio M, Spataro T, Picci N, Restuccia D, Iemma F, Spizzirri UG (2018) Antioxidant polymers for food packaging. In Food Packaging and Preservation (pp. 213–238). Elsevier

  27. Coma V, Bartkowiak A (2019) Potential of chitosans in the development of edible food packaging. Chitin and Chitosan: Properties and Applications, 349–369

  28. Compton OC, Kim S, Pierre C, Torkelson JM, Nguyen ST (2010) Crumpled graphene nanosheets as highly effective barrier property enhancers. Adv Mater 22(42):4759–4763. https://doi.org/10.1002/adma.201000960

    Article  CAS  PubMed  Google Scholar 

  29. da Silva Sobrinho AS, Czeremuszkin G, Latrèche M, Wertheimer MR (2000) Defect-permeation correlation for ultrathin transparent barrier coatings on polymers. J Vac Sci Technol A 18(1):149–157. https://doi.org/10.1116/1.582156

    Article  Google Scholar 

  30. Dai C-F, Li P-R, Yeh J-M (2008) Comparative studies for the effect of intercalating agent on the physical properties of epoxy resin-clay based nanocomposite materials. Eur Polym J 44(8):2439–2447

    CAS  Google Scholar 

  31. Dobrucka R, Przekop R (2019) New perspectives in active and intelligent food packaging. J Food Process Preserv 43(11):e14194

    CAS  Google Scholar 

  32. Donadi S, Modesti M, Lorenzetti A, Besco S (2011) PET/PA nanocomposite blends with improved gas barrier properties: effect of processing conditions. J Appl Polym Sci 122(5):3290–3297

    CAS  Google Scholar 

  33. Durmucs A, Woo M, Kacsgöz A, Macosko CW, Tsapatsis M (2007) Intercalated linear low density polyethylene (LLDPE)/clay nanocomposites prepared with oxidized polyethylene as a new type compatibilizer: structural, mechanical and barrier properties. Eur Polym J 43(9):3737–3749

    Google Scholar 

  34. Enescu D, Cerqueira MA, Fucinos P, Pastrana LM (2019) Recent advances and challenges on applications of nanotechnology in food packaging. A literature review. Food Chem Toxicol 110814

  35. Erlat AG, Spontak RJ, Clarke RP, Robinson TC, Haaland PD, Tropsha Y, Harvey NG, Vogler EA (1999) SiOx gas barrier coatings on polymer substrates: morphology and gas transport considerations. J Phys Chem B 103(29):6047–6055. https://doi.org/10.1021/jp990737e

    Article  CAS  Google Scholar 

  36. Fang Z, Zhao Y, Warner RD, Johnson SK (2017) Active and intelligent packaging in meat industry. Trends Food Sci Technol 61:60–71

    CAS  Google Scholar 

  37. Farhoodi M (2016) Nanocomposite materials for food packaging applications: characterization and safety evaluation. Food Eng Rev 8(1):35–51

    CAS  Google Scholar 

  38. Felts JT, Grubb AD (1992) Commercial-scale application of plasma processing for polymeric substrates: from laboratory to production. J Vac Sci Technol A 10(4):1675–1681. https://doi.org/10.1116/1.577768

    Article  CAS  Google Scholar 

  39. Finch CA (1985) Encyclopedia of polymer science and engineering, 2nd edition. Brit Polymer J 17(4):377–377. https://doi.org/10.1002/pi.4980170412

    Article  Google Scholar 

  40. Frounchi M, Dourbash A (2009) Oxygen barrier properties of poly (ethylene terephthalate) nanocomposite films. Macromol Mater Eng 294(1):68–74

    CAS  Google Scholar 

  41. Gaikwad KK, Singh S, Lee YS (2018) Oxygen scavenging films in food packaging. Environ Chem Lett 16(2):523–538. https://doi.org/10.1007/s10311-018-0705-z

    Article  CAS  Google Scholar 

  42. Gaikwad KK, Singh S, Lee YS (2019) Antimicrobial and improved barrier properties of natural phenolic compound-coated polymeric films for active packaging applications. J Coat Technol Res 16(1):147–157. https://doi.org/10.1007/s11998-018-0109-9

    Article  CAS  Google Scholar 

  43. Garc’ia A, Eceolaza S, Iriarte M, Uriarte C, Etxeberria A (2007) Barrier character improvement of an amorphous polyamide (Trogamid) by the addition of a nanoclay. J Membr Sci 301(1–2):190–199

    Google Scholar 

  44. Gavgani JN, Adelnia H, Gudarzi MM (2014) Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. J Mater Sci 49(1):243–254

    CAS  Google Scholar 

  45. Ghaani M, Cozzolino CA, Castelli G, Farris S (2016) An overview of the intelligent packaging technologies in the food sector. Trends Food Sci Technol 51:1–11

    CAS  Google Scholar 

  46. Ghasemnejad-Afshar E, Amjad-Iranagh S, Zarif M, Modarress H (2020) Effect of side branch on gas separation performance of triptycene based PIM membrane: a molecular simulation study. Polymer Testing 106339

  47. Ghoshal G (2019) Recent development in beverage packaging material and its adaptation strategy. In Trends in Beverage Packaging (pp. 21–50). Elsevier

  48. Giannakas A, Vlacha M, Salmas C, Leontiou A, Katapodis P, Stamatis H, Barkoula N M, Ladavos A (2016) Preparation, characterization, mechanical, barrier and antimicrobial properties of chitosan/PVOH/clay nanocomposites. Carbohydr Polym 140:408–415

  49. Goh K, Heising JK, Yuan Y, Karahan HE, Wei L, Zhai S, Koh JX, Htin NM, Zhang F, Wang R, Fane AG, Dekker M, Dehghani F, Chen Y (2016) Sandwich-architectured poly(lactic acid)-graphene composite food packaging films. ACS Appl Mater Interfaces 8(15):9994–10004. https://doi.org/10.1021/acsami.6b02498

    Article  CAS  PubMed  Google Scholar 

  50. Gu C-H, Wang J-J, Yu Y, Sun H, Shuai N, Wei B (2013) Biodegradable multilayer barrier films based on alginate/polyethyleneimine and biaxially oriented poly(lactic acid). Carbohydr Polym 92(2):1579–1585. https://doi.org/10.1016/J.CARBPOL.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  51. Guin T, Krecker M, Hagen DA, Grunlan JC (2014) Thick growing multilayer nanobrick wall thin films: super gas barrier with very few layers. Langmuir 30(24):7057–7060. https://doi.org/10.1021/la501946f

    Article  CAS  PubMed  Google Scholar 

  52. Gupta A, Mulchandani N, Shah M, Kumar S, Katiyar V (2018) Functionalized chitosan mediated stereocomplexation of poly(lactic acid): influence on crystallization, oxygen permeability, wettability and biocompatibility behavior. Polymer 142:196–208. https://doi.org/10.1016/j.polymer.2017.12.064

    Article  CAS  Google Scholar 

  53. Hagen DA, Box C, Greenlee S, Xiang F, Regev O, Grunlan JC (2014a) High gas barrier imparted by similarly charged multilayers in nanobrick wall thin films. RSC Adv 4(35):18354–18359. https://doi.org/10.1039/C4RA01621A

    Article  CAS  Google Scholar 

  54. Hamzehlou SH, Katbab AA (2007) Bottle-to-bottle recycling of PET via nanostructure formation by melt intercalation in twin screw compounder: improved thermal, barrier, and microbiological properties. J Appl Polym Sci 106(2):1375–1382

    CAS  Google Scholar 

  55. Han J W, Ruiz-Garcia L, Qian J P, Yang X T (2018) Food packaging: A comprehensive review and future trends. Compr Rev Food Sci Food Saf 17(4): 860–877

  56. Han’guk Sikp’um Kwahakhoe, J.-W. (2007). Food science and biotechnology. Food Science and Biotechnology (Vol. 16). Korean Society of Food Science and Technology. Retrieved from http://www.dbpia.co.kr/Journal/ArticleDetail/NODE01728955

  57. Hanika M, Langowski H-C, Moosheimer U, Peukert W (2003) Inorganic layers on polymeric films—influence of defects and morphology on barrier properties. Chem Eng Technol 26(5):605–614. https://doi.org/10.1002/ceat.200390093

    Article  CAS  Google Scholar 

  58. Holder KM, Priolo MA, Secrist KE, Greenlee SM, Nolte AJ, Grunlan JC (2012) Humidity-responsive gas barrier of hydrogen-bonded polymer-clay multilayer thin films. J Phys Chem C 116(37):19851–19856. https://doi.org/10.1021/jp306002p

    Article  CAS  Google Scholar 

  59. Holder KM, Spears BR, Huff ME, Priolo MA, Harth E, Grunlan JC (2014) Stretchable gas barrier achieved with partially hydrogen-bonded multilayer nanocoating. Macromol Rapid Commun 35(10):960–964. https://doi.org/10.1002/marc.201400104

    Article  CAS  PubMed  Google Scholar 

  60. Hong SI, Lee JH, Bae HJ, Koo SY, Lee HS, Choi JH, Kim DH, Park SH, Park HJ (2011) Effect of shear rate on structural, mechanical, and barrier properties of chitosan/montmorillonite nanocomposite film. J Appl Polym Sci 119(5):2742–2749

    CAS  Google Scholar 

  61. Hosseini SF, Gómez-Guillén MC (2018) A state-of-the-art review on the elaboration of fish gelatin as bioactive packaging: special emphasis on nanotechnology-based approaches. Trends Food Sci Technol 79:125–135

    CAS  Google Scholar 

  62. Hosseini SF, Javidi Z, Rezaei M (2016) Efficient gas barrier properties of multi-layer films based on poly(lactic acid) and fish gelatin. Int J Biol Macromol 92:1205–1214. https://doi.org/10.1016/J.IJBIOMAC.2016.08.034

    Article  CAS  PubMed  Google Scholar 

  63. Huang H-Y, Huang T-C, Yeh T-C, Tsai C-Y, Lai C-L, Tsai M-H, Yeh JM, Chou Y-C (2011) Advanced anticorrosive materials prepared from amine-capped aniline trimer-based electroactive polyimide-clay nanocomposite materials with synergistic effects of redox catalytic capability and gas barrier properties. Polymer 52(11):2391–2400

    CAS  Google Scholar 

  64. Huang H-D, Ren P-G, Chen J, Zhang W-Q, Ji X, Li Z-M (2012) High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films. J Membr Sci 409–410:156–163. https://doi.org/10.1016/j.memsci.2012.03.051

    Article  CAS  Google Scholar 

  65. Huang H-D, Ren P-G, Xu J-Z, Xu L, Zhong G-J, Hsiao BS, Li Z-M (2014) Improved barrier properties of poly (lactic acid) with randomly dispersed graphene oxide nanosheets. J Membr Sci 464:110–118

    CAS  Google Scholar 

  66. Idumah CI, Zurina M, Ogbu J, Ndem JU, Igba EC (2020) A review on innovations in polymeric nanocomposite packaging materials and electrical sensors for food and agriculture. Compos Interf 27(1):1–72

    CAS  Google Scholar 

  67. Inagaki N, Tasaka S, Hiramatsu H (1999) Preparation of oxygen gas barrier poly(ethylene terephthalate) films by deposition of silicon oxide films plasma-polymerized from a mixture of tetramethoxysilane and oxygen. J Appl Polym Sci 71(12):2091–2100. https://doi.org/10.1002/(SICI)1097-4628(19990321)71:12<2091::AID-APP20>3.0.CO;2-A

    Article  CAS  Google Scholar 

  68. Incarnato L, Scarfato P, Russo GM, Di Maio L, Iannelli P, Acierno D (2003) Preparation and characterization of new melt compounded copolyamide nanocomposites. Polymer 44(16):4625–4634

    CAS  Google Scholar 

  69. Ishtiaque S, Naz S, Ahmed J, Faruqui A (2018) Barrier properties analysis of polyethylene terephthalate films (PET) coated with natural polyphenolic and gelatin mixture (PGM). Defect Diffusion Forum 382 DDF:38–43. https://doi.org/10.4028/www.scientific.net/DDF.382.38

    Article  Google Scholar 

  70. Izu M, Dotter B, Ovshinski SR (1993). In High performance clear coat barrier film , 36 th Annual Technical Conference Proceedings , Society of Vacuum Coaters (p. 333). Dallas

  71. Jang W, Rawson I, Grunlan J (2008) Layer-by-layer assembly of thin film oxygen barrier. Thin Solid Films Retrieved from https://www.sciencedirect.com/science/article/pii/S0040609007015581 516:4819–4825

    CAS  Google Scholar 

  72. Jiang J, Benter M, Taboryski R, Bechgaard K (2010) Oxygen barrier coating deposited by novel plasma-enhanced chemical vapor deposition. J Appl Polym Sci 115(5):2767–2772. https://doi.org/10.1002/app.30222

    Article  CAS  Google Scholar 

  73. Johnson DR, Decker EA (2015) The role of oxygen in lipid oxidation reactions: a review. Annu Rev Food Sci Technol 6(1):171–190. https://doi.org/10.1146/annurev-food-022814-015532

    Article  CAS  PubMed  Google Scholar 

  74. Joo E, Chang Y, Choi I, Lee SB, Kim DH, Choi YJ, Yoon CS, Han J (2018) Whey protein-coated high oxygen barrier multilayer films using surface pretreated PET substrate. Food Hydrocoll 80:1–7. https://doi.org/10.1016/j.foodhyd.2018.01.027

    Article  CAS  Google Scholar 

  75. Júnior LM, Cristianini M, Padula M, Anjos CAR (2019) Effect of high-pressure processing on characteristics of flexible packaging for foods and beverages. Food Res Int 119:920–930

    Google Scholar 

  76. Kalendová A, Merinska D, Gerard JF, Slouf M (2013) Polymer/clay nanocomposites and their gas barrier properties. Polym Compos 34(9):1418–1424

    Google Scholar 

  77. Kang H, Zuo K, Wang Z, Zhang L, Liu L, Guo B (2014) Using a green method to develop graphene oxide/elastomers nanocomposites with combination of high barrier and mechanical performance. Compos Sci Technol 92:1–8

    CAS  Google Scholar 

  78. Khosravi A, Fereidoon A, Khorasani MM, Naderi G, Ganjali MR, Zarrintaj P, Saeb MR, Gutiérrez TJ (2020) Soft and hard sections from cellulose-reinforced poly (lactic acid)-based food packaging films: a critical review. Food Packag Shelf Life 23:100429

    Google Scholar 

  79. Kochumalayil JJ, Bergenstrahle-Wohlert M, Utsel S, Wagberg L, Zhou Q, Berglund LA (2012) Bioinspired and highly oriented clay nanocomposites with a xyloglucan biopolymer matrix: extending the range of mechanical and barrier properties. Biomacromolecules 14(1):84–91

    PubMed  Google Scholar 

  80. Krug T (1990) In Transparent barriers for food packaging , 33rd Annual Technical Conference Proceedings , Society of Vacuum Coaters (p. 163). New Orleans

  81. Krug T, Ludwig R, Steiniger G (1993) In New developments in transparent barrier coatings , 36 th Annual Technical Conference Proceedings , Society of Vacuum Coaters (p. 302). Dallas

  82. Lagaron JM, Cabedo L, Cava D, Feijoo JL, Gavara R, Gimenez E (2005) Improving packaged food quality and safety. Part 2: Nanocomposites. Food Addit Contam 22(10):994–998

    CAS  PubMed  Google Scholar 

  83. Lai C-L, Chen J-T, Fu Y-J, Liu W-R, Zhong Y-R, Huang S-H, Hung WS, Lue SJ, Hu CC, Lee K-R (2015) Bio-inspired cross-linking with borate for enhancing gas-barrier properties of poly(vinyl alcohol)/graphene oxide composite films. Carbon 82:513–522. https://doi.org/10.1016/J.CARBON.2014.11.003

    Article  CAS  Google Scholar 

  84. Laufer G, Kirkland C, Cain AA, Grunlan JC (2012) Clay-chitosan nanobrick walls: completely renewable gas barrier and flame-retardant nanocoatings. ACS Appl Mater Interfaces 4(3):1643–1649. https://doi.org/10.1021/am2017915

    Article  CAS  PubMed  Google Scholar 

  85. Laufer G, Kirkland C, Cain AA, Grunlan JC (2013) Oxygen barrier of multilayer thin films comprised of polysaccharides and clay. Carbohydr Polym 95(1):299–302. https://doi.org/10.1016/J.CARBPOL.2013.02.048

    Article  CAS  PubMed  Google Scholar 

  86. Lazar S, Garcia-Valdez O, Kennedy E, Champagne P, Cunningham M, Grunlan J (2019) Crosslinkable-chitosan-enabled moisture-resistant multilayer gas barrier thin film. Macromol Rapid Commun 40(6):1800853. https://doi.org/10.1002/marc.201800853

    Article  CAS  Google Scholar 

  87. Leväsalmi J-M, McCarthy TJ (1997) Poly(4-methyl-1-pentene)-supported polyelectrolyte multilayer films: preparation and gas permeability. Macromolecules 30(6):1752–1757. https://doi.org/10.1021/ma961245s

    Article  Google Scholar 

  88. Li C, Jiang T, Wang J, Peng S, Wu H, Shen J, Guo S, Zhang X, Harkin-Jones E (2018a) Enhancing the oxygen-barrier properties of polylactide by tailoring the arrangement of crystalline lamellae. ACS Sustain Chem Eng 6(5):6247–6255

    CAS  Google Scholar 

  89. Li X, Bandyopadhyay P, Guo M, Kim NH, Lee JH (2018b) Enhanced gas barrier and anticorrosion performance of boric acid induced cross-linked poly(vinyl alcohol-co-ethylene)/graphene oxide film. Carbon 133:150–161. https://doi.org/10.1016/J.CARBON.2018.03.036

    Article  CAS  Google Scholar 

  90. Li X, Bandyopadhyay P, Nguyen TT, Park O, Lee JH (2018c) Fabrication of functionalized graphene oxide/maleic anhydride grafted polypropylene composite film with excellent gas barrier and anticorrosion properties. J Membr Sci 547:80–92

    CAS  Google Scholar 

  91. Li Y, Zhang K, Nie M, Wang Q (2020) Application of compatibilized polymer blends in packaging. In Compatibilization of Polymer Blends (pp. 539–561). Elsevier

  92. Lin N, Tang J, Dufresne A, Tam MKC (2019) Advanced functional materials from nanopolysaccharides. Springer

  93. Liu A, Walther A, Ikkala O, Belova L, Berglund LA (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12(3):633–641

    CAS  PubMed  Google Scholar 

  94. López-Rubio A, Fabra MJ, Mart’inez-Sanz M (2019) Food packaging based on nanomaterials. Multidisciplinary Digital Publishing Institute

  95. Lu P, Guo M, Xu Z, Wu M (2018) Application of nanofibrillated cellulose on BOPP/LDPE film as oxygen barrier and antimicrobial coating based on cold plasma treatment. Coatings 8(6). https://doi.org/10.3390/coatings8060207

  96. Mahmoudian S, Wahit MU, Imran M, Ismail AF, Balakrishnan H (2012) A facile approach to prepare regenerated cellulose/graphene nanoplatelets nanocomposite using room-temperature ionic liquid. J Nanosci Nanotechnol 12(7):5233–5239

    CAS  PubMed  Google Scholar 

  97. Majeed K, Hassan A, Bakar AA, Jawaid M (2016) Effect of montmorillonite (MMT) content on the mechanical, oxygen barrier, and thermal properties of rice husk/MMT hybrid filler-filled low-density polyethylene nanocomposite blown films. J Thermoplast Compos Mater 29(7):1003–1019

    CAS  Google Scholar 

  98. Mangaraj S, Yadav A, Bal LM, Dash SK, Mahanti NK (2019) Application of biodegradable polymers in food packaging industry: a comprehensive review. J Packaging Technol Res 3(1):77–96

    Google Scholar 

  99. Massey LK (2003) Permeability properties of plastics and elastomers: a guide to packaging and barrier materials. William Andrew

  100. Mei L, Wang Q (2020) Advances in using nanotechnology structuring approaches for improving food packaging. Annu Rev Food Sci Technol 11:339364

    PubMed  Google Scholar 

  101. Merritt S, Wemyss AM, Farris S, Patole S, Patias G, Haddleton DM, … Wan C (2020) Gas barrier polymer nanocomposite films prepared by graphene oxide encapsulated polystyrene microparticles. ACS Applied Polymer Materials

  102. Min D B, Boff J M (2002) Chemistry and reaction of singlet oxygen in foods. Compr Rev Food Sci Food Saf 1(2):58–72

  103. Minelli M, Sarti GC (2017) Elementary prediction of gas permeability in glassy polymers. J Membr Sci 521:73–83

    CAS  Google Scholar 

  104. Mirzadeh A, Kokabi M (2007) The effect of composition and draw-down ratio on morphology and oxygen permeability of polypropylene nanocomposite blown films. Eur Polym J 43(9):3757–3765

    CAS  Google Scholar 

  105. Misiano C, Simonetti E, Cerolini P, F S (1991) In Silicon oxide barrier improvement on plastic substrate , 33 rd Annual Technical Conference Proceedings , Society of Vacuum Coaters (p. 105). Philadelphia

  106. Mittal V (2007) Gas permeation and mechanical properties of polypropylene nanocomposites with thermally-stable imidazolium modified clay. Eur Polym J 43(9):3727–3736

    CAS  Google Scholar 

  107. Möller MW, Kunz DA, Lunkenbein T, Sommer S, Nennemann A, Breu J (2012) UV-cured, flexible, and transparent nanocomposite coating with remarkable oxygen barrier. Adv Mater 24(16):2142–2147. https://doi.org/10.1002/adma.201104781

    Article  CAS  PubMed  Google Scholar 

  108. Moustafa H, Youssef AM, Darwish NA, Abou-Kandil AI (2019) Eco-friendly polymer composites for green packaging: future vision and challenges. Compos B: Eng

  109. Mu R, Hong X, Ni Y, Li Y, Pang J, Wang Q, Xiao J, Zheng Y (2019) Recent trends and applications of cellulose nanocrystals in food industry. Trends Food Sci Technol 93:136–144

    CAS  Google Scholar 

  110. Nazarenko S, Meneghetti P, Julmon P, Olson BG, Qutubuddin S (2007) Gas barrier of polystyrene montmorillonite clay nanocomposites: effect of mineral layer aggregation. J Polym Sci B Polym Phys 45(13):1733–1753

    CAS  Google Scholar 

  111. Nešić A, Cabrera-Barjas G, Dimitrijević-Branković S, Davidović S, Radovanović N, Delattre C (2020) Prospect of polysaccharide-based materials as advanced food packaging. Molecules 25(1):135

    Google Scholar 

  112. Nyflött Å, Meriçer Ç, Minelli M, Moons E, Järnström L, Lestelius M, Baschetti MG (2017) The influence of moisture content on the polymer structure of polyvinyl alcohol in dispersion barrier coatings and its effect on the mass transport of oxygen. J Coat Technol Res 14(6):1345–1355

    Google Scholar 

  113. Öner M, Çöl AA, Pochat-Bohatier C, Bechelany M (2016) Effect of incorporation of boron nitride nanoparticles on the oxygen barrier and thermal properties of poly (3-hydroxybutyrate-co-hydroxyvalerate). RSC Adv 6(93):90973–90981

    Google Scholar 

  114. Öner M, Keskin G, Kizil G, Pochat-Bohatier C, Bechelany M (2019) Development of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/boron nitride bionanocomposites with enhanced barrier properties. Polym Compos 40(1):78–90

    Google Scholar 

  115. Ortenzi MA, Basilissi L, Farina H, Di Silvestro G, Piergiovanni L, Mascheroni E (2015) Evaluation of crystallinity and gas barrier properties of films obtained from PLA nanocomposites synthesized via “in situ” polymerization of l-lactide with silane-modified nanosilica and montmorillonite. Eur Polym J 66:478–491. https://doi.org/10.1016/J.EURPOLYMJ.2015.03.006

    Article  CAS  Google Scholar 

  116. Osman MA, Atallah A (2004) High-density polyethylene microand nanocomposites: effect of particle shape, size and surface treatment on polymer crystallinity and gas permeability. Macromol Rapid Commun 25:1540–1544

    CAS  Google Scholar 

  117. Osman MA, Mittal V, Morbidelli M, Suter UW (2004) Epoxy-layered silicate nanocomposites and their gas permeation properties. Macromolecules 37(19):7250–7257

    CAS  Google Scholar 

  118. Paine AC (2016) Cyclic oxygen scavenging polymers for barrier applications

  119. Park J, Won JK, Park J-G, Yu S, An J, Hong J, Kim C, Baeg KJ, Kim M-G (2019) High throughput bar-coating processed organic-inorganic hybrid multi-layers for gas barrier thin-films. J Nanosci Nanotechnol 19(7):4299–4304. https://doi.org/10.1166/jnn.2019.16333

    Article  CAS  PubMed  Google Scholar 

  120. Patra SK, Swain SK (2012) Effect of organoclays on the thermal, mechanical, and oxygen barrier properties of poly (methylmethacrylate-co-acrylonitrile)/clay nanocomposites. Polym Compos 33(5):796–802

    CAS  Google Scholar 

  121. Patwa R, Kumar A, Katiyar V (2018) Effect of silk nano-disc dispersion on mechanical, thermal, and barrier properties of poly(lactic acid) based bionanocomposites. J Appl Polym Sci 135(38). https://doi.org/10.1002/app.46671

  122. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204

    CAS  Google Scholar 

  123. Picard E, Espuche E, Fulchiron R (2011) Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties. Appl Clay Sci 53(1):58–65

    CAS  Google Scholar 

  124. Pinto AM, Cabral J, Tanaka DAP, Mendes AM, Magalhães FD (2013) Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly (lactic acid) films. Polym Int 62(1):33–40

    CAS  Google Scholar 

  125. Prasad K, Nikzad M, Sbarski I (2018) Permeability control in polymeric systems: a review. J Polym Res 25(11):232

    Google Scholar 

  126. Priolo MA, Gamboa D, Grunlan JC (2010a) Transparent clay−polymer nano brick wall assemblies with tailorable oxygen barrier. ACS Appl Mater Interfaces 2(1):312–320. https://doi.org/10.1021/am900820k

    Article  CAS  Google Scholar 

  127. Priolo MA, Gamboa D, Holder KM, Grunlan JC (2010b) Super gas barrier of transparent polymer-clay multilayer ultrathin films. Nano Lett 10(12):4970–4974. https://doi.org/10.1021/nl103047k

    Article  CAS  PubMed  Google Scholar 

  128. Priolo MA, Holder KM, Gamboa D, Grunlan JC (2011) Influence of clay concentration on the gas barrier of clay–polymer nanobrick wall thin film Assemblies. Langmuir 27(19):12106–12114. https://doi.org/10.1021/la201584r

    Article  CAS  PubMed  Google Scholar 

  129. Priolo MA, Holder KM, Greenlee SM, Stevens BE, Grunlan JC (2013) Precisely tuning the clay spacing in nanobrick wall gas barrier thin films. Chem Mater 25(9):1649–1655

    CAS  Google Scholar 

  130. Priolo MA, Holder KM, Guin T, Grunlan JC (2015) Recent advances in gas barrier thin films via layer-by-layer assembly of polymers and platelets. Macromol Rapid Commun 36(10):866–879. https://doi.org/10.1002/marc.201500055

    Article  CAS  PubMed  Google Scholar 

  131. Quinn JF, Johnston APR, Such GK, Zelikin AN, Caruso F (2007) Next generation, sequentially assembled ultrathin films: beyond electrostatics. Chem Soc Rev 36(5):707–718. https://doi.org/10.1039/b610778h

    Article  CAS  PubMed  Google Scholar 

  132. Rai M, Ingle AP, Gupta I, Pandit R, Paralikar P, Gade A, Chaud MV, dos Santos CA (2019) Smart nanopackaging for the enhancement of food shelf life. Environ Chem Lett 17(1):277–290

    CAS  Google Scholar 

  133. Ramezani H, Behzad T, Bagheri R (2019) Synergistic effect of graphene oxide nanoplatelets and cellulose nanofibers on mechanical, thermal, and barrier properties of thermoplastic starch. Polym Adv Technol

  134. Ramos M, Jiménez A, Peltzer M, Garrigós MC (2014) Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Food Chem 162:149–155

    CAS  PubMed  Google Scholar 

  135. Rampazzo R, Alkan D, Gazzotti S, Ortenzi MA, Piva G, Piergiovanni L (2017) Cellulose nanocrystals from lignocellulosic raw materials, for oxygen barrier coatings on food packaging films. Packag Technol Sci 30(10):645–661. https://doi.org/10.1002/pts.2308

    Article  CAS  Google Scholar 

  136. Ren P-G, Wang H, Huang H-D, Yan D-X, Li Z-M (2014) Characterization and performance of dodecyl amine functionalized graphene oxide and dodecyl amine functionalized graphene/high-density polyethylene nanocomposites: a comparative study. J Appl Polym Sci 131(2)

  137. Ren F, Tan W, Duan Q, Jin Y, Pei L, Ren P, Yan D (2019) Ultra-low gas permeable cellulose nanofiber nanocomposite films filled with highly oriented graphene oxide nanosheets induced by shear field. Carbohydr Polym 209:310–319

    CAS  PubMed  Google Scholar 

  138. Risyon NP, Othman SH, Basha RK, Talib RA (2020) Characterization of polylactic acid/halloysite nanotubes bionanocomposite films for food packaging. Food Packag Shelf Life 23:100450

    Google Scholar 

  139. Roberts AP, Henry BM, Sutton AP, Grovenor CRM, Briggs GAD, Miyamoto T, Kano M, Tsukahara Y, Yanaka M (2002) Gas permeation in silicon-oxide/polymer (SiOx/PET) barrier films: role of the oxide lattice, nano-defects and macro-defects. J Membr Sci 208(1–2):75–88. https://doi.org/10.1016/S0376-7388(02)00178-3

    Article  CAS  Google Scholar 

  140. Sabet SS, Katbab AA (2009) Interfacially compatibilized poly (lactic acid) and poly (lactic acid)/polycaprolactone/organoclay nanocomposites with improved biodegradability and barrier properties: effects of the compatibilizer structural parameters and feeding route. J Appl Polym Sci 111(4):1954–1963

    CAS  Google Scholar 

  141. Sanchez-Garcia MD, Gimenez E, Lagaron JM (2007) Novel PET nanocomposites of interest in food packaging applications and comparative barrier performance with biopolyester nanocomposites. J Plastic Film Sheet 23(2):133–148. https://doi.org/10.1177/8756087907083590

    Article  CAS  Google Scholar 

  142. Schiller C, Strunz W (2001) The evaluation of experimental dielectric data of barrier coatings by means of different models. Electrochim Acta Retrieved from https://www.sciencedirect.com/science/article/pii/S0013468601006442 46:3619–3625

    CAS  Google Scholar 

  143. Sonchaeng U, Iniguez-Franco F, Auras R, Selke S, Rubino M, Lim L-T (2018) Poly (lactic acid) mass transfer properties. Prog Polym Sci 86:85–121

    CAS  Google Scholar 

  144. Spoljaric S, Salminen A, Dang Luong N, Lahtinen P, Vartiainen J, Tammelin T, Seppälä J (2014) Nanofibrillated cellulose, poly (vinyl alcohol), montmorillonite clay hybrid nanocomposites with superior barrier and thermomechanical properties. Polym Compos 35(6):1117–1131

    CAS  Google Scholar 

  145. Svagan AJ, Åkesson A, Cárdenas M, Bulut S, Knudsen JC, Risbo J, Plackett D (2012) Transparent films based on PLA and montmorillonite with tunable oxygen barrier properties. Biomacromolecules 13(2):397–405. https://doi.org/10.1021/bm201438m

    Article  CAS  PubMed  Google Scholar 

  146. Tas CE, Hendessi S, Baysal M, Unal S, Cebeci FC, Menceloglu YZ, Unal H (2017) Halloysite nanotubes/polyethylene nanocomposites for active food packaging materials with ethylene scavenging and gas barrier properties. Food Bioprocess Technol 10(4):789–798. https://doi.org/10.1007/s11947-017-1860-0

    Article  CAS  Google Scholar 

  147. Tomlinson R, Klee M, Shane Garrett S-H, Heller J, Duncan R, Brocchini S (2001) Pendent chain functionalized polyacetals that display pH-dependent degradation: a platform for the development of novel polymer therapeutics. Macromolecules 35(2):473–480. https://doi.org/10.1021/MA0108867

    Article  Google Scholar 

  148. Tzeng P, Maupin CR, Grunlan JC (2014) Influence of polymer interdiffusion and clay concentration on gas barrier of polyelectrolyte/clay nanobrick wall quadlayer assemblies. J Membr Sci 452:46–53. https://doi.org/10.1016/j.memsci.2013.10.039

    Article  CAS  Google Scholar 

  149. Vaezi K, Asadpour G, Sharifi H (2020) Bio nanocomposites based on cationic starch reinforced with montmorillonite and cellulose nanocrystals: fundamental properties and biodegradability study. Int J Biol Macromol 146:374–386

    CAS  PubMed  Google Scholar 

  150. Valapa RB, Pugazhenthi G, Katiyar V (2015) Effect of graphene content on the properties of poly (lactic acid) nanocomposites. RSC Adv 5(36):28410–28423

    CAS  Google Scholar 

  151. Villaluenga JPG, Khayet M, Lopez-Manchado MA, Valentin JL, Seoane B, Mengual JI (2007) Gas transport properties of polypropylene/clay composite membranes. Eur Polym J 43(4):1132–1143

    CAS  Google Scholar 

  152. Wan T, Chen L, Chua YC, Lu X (2004) Crystalline morphology and isothermal crystallization kinetics of poly (ethylene terephthalate)/clay nanocomposites. J Appl Polym Sci 94(4):1381–1388

    CAS  Google Scholar 

  153. Wang Y, Jabarin SA (2013) Novel preparation method for enhancing nanoparticle dispersion and barrier properties of poly (ethylene terephthalate) and poly (m-xylylene adipamide). J Appl Polym Sci 129(3):1455–1465

    CAS  Google Scholar 

  154. Wang C, Shi J, He M, Ding L, Li S, Wang Z, Wei J (2018) High strength cellulose/ATT composite films with good oxygen barrier property for sustainable packaging applications. Cellulose 25(7):4145–4154. https://doi.org/10.1007/s10570-018-1855-7

    Article  CAS  Google Scholar 

  155. Weizman O, Dotan A, Nir Y, Ophir A (2017) Modified whey protein coatings for improved gas barrier properties of biodegradable films. Polym Adv Technol 28(2):261–270. https://doi.org/10.1002/pat.3882

    Article  CAS  Google Scholar 

  156. Xiang F, Tzeng P, Sawyer JS, Regev O, Grunlan JC (2013) Improving the gas barrier property of clay-polymer multilayer thin films using shorter deposition times. ACS Appl Mater Interfaces 6(9):6040–6048

    PubMed  Google Scholar 

  157. Xu P, Yang W, Niu D, Yu M, Du M, Dong W et al (2020) Multifunctional and robust polyhydroxyalkanoate nanocomposites with superior gas barrier, heat resistant and inherent antibacterial performances. Chem Eng J 382:122864

    CAS  Google Scholar 

  158. Yampolskii Y (2017) Permeability of polymers. Membrane Materials for Gas and Vapor Separation, 1–15

  159. Yang Y-H, Haile M, Park YT, Malek FA, Grunlan JC (2011) Super gas barrier of all-polymer multilayer thin films. Macromolecules 44(6):1450–1459. https://doi.org/10.1021/ma1026127

    Article  CAS  Google Scholar 

  160. Yang J, Bai L, Feng G, Yang X, Lv M, Zhang C et al (2013a) Thermal reduced graphene based poly (ethylene vinyl alcohol) nanocomposites: enhanced mechanical properties, gas barrier, water resistance, and thermal stability. Ind Eng Chem Res 52(47):16745–16754

    CAS  Google Scholar 

  161. Yang Y-H, Bolling L, Priolo MA, Grunlan JC (2013b) Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films. Adv Mater 25(4):503–508. https://doi.org/10.1002/adma.201202951

    Article  CAS  PubMed  Google Scholar 

  162. Yu L, Lim Y, Han J, Kim K, Kim J, Choi S, Shin K (2012) A graphene oxide oxygen barrier film deposited via a self-assembly coating method. Synth Met Retrieved from https://www.sciencedirect.com/science/article/pii/S0379677912000707 162:710–714

    CAS  Google Scholar 

  163. Zabihzadeh Khajavi M, Mohammadi R, Ahmadi S, Farhoodi M, Yousefi M (2019) strategies for controlling release of plastic compounds into foodstuffs based on application of nanoparticles and its potential health issues. Trends Food Sci Technol 90:1–12

    CAS  Google Scholar 

  164. Zhang P, Zhao Y, Shi Q (2016) Characterization of a novel edible film based on gum ghatti: Effect of plasticizer type and concentration. Carbohydr Polym 153:345–355

    CAS  PubMed  Google Scholar 

  165. Zhuang L, Zhi X, Du B, Yuan S (2020) Preparation of elastic and antibacterial chitosan--citric membranes with high oxygen barrier ability by in situ cross-linking. ACS Omega

  166. Zubair M, Ullah A (2020) Recent advances in protein derived bionanocomposites for food packaging applications. Crit Rev Food Sci Nutr 60(3):406–434

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is related to the project NO. 1398/10200 from the Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran. We also appreciate “Student Research Committee” and “Research & Technology Chancellor” in Shahid Beheshti University of Medical Sciences for their financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shervin Ahmadi or Mehdi Farhoodi.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabihzadeh Khajavi, M., Ebrahimi, A., Yousefi, M. et al. Strategies for Producing Improved Oxygen Barrier Materials Appropriate for the Food Packaging Sector. Food Eng Rev 12, 346–363 (2020). https://doi.org/10.1007/s12393-020-09235-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-020-09235-y

Keywords

Navigation