Skip to main content
Log in

Operation Range-Optimized Silver Nanowire Through Junction Treatment

  • Original Article - Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In past decades, stretchable conductors have been investigated for a wide range of applications, and the operation strain range of such devices varies by application. To commercialize stretchable devices, it is necessary to optimize the deformation of stretchable electrodes based on a given device elongation range. Therefore, we investigated the deformation mechanics of a silver nanowire (AgNW) electrode on an elastomeric substrate depending on its junction treatment method. At low-strain (< 15%), a thermally annealed AgNW electrode showed more stable resistance than a laser-welded AgNW electrode. Conversely, at high strain (> 20%), the thermally annealed AgNW electrode rapidly increased in resistance, while the laser-welded AgNW electrode showed lower resistivity change. By in situ surface analysis and a repetitive tensile test, we observed that the thermally annealed AgNW electrode shows less cracking at low strain but the laser-welded AgNW electrode exhibits fracturing of individual nanowires at low strain. Furthermore, at high strain, laser-welded AgNWs could slide to reduce stress during elongation, resulting in a smaller change in resistance compared to that of thermally annealed AgNW electrode. These results indicate that optimization of adhesion is necessary to fabricate stretchable devices based on deformation range.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huang, S., Liu, Y., Zhao, Y., Ren, Z., Guo, C.F.: Flexible electronics: stretchable electrodes and their future. Adv. Funct. Mater. 29, 1805924 (2018)

    Article  Google Scholar 

  2. Chen, Z.H., Fang, R., Li, W., Guan, J.: Stretchable transparent conductors: from micro/macromechanics to applications. Adv. Mater. 31, 1900756 (2019)

    Article  Google Scholar 

  3. Jung, E.D., Nam, Y.S., Seo, H., Lee, B.R., Yu, J.C., Lee, S.Y., Kim, J.-Y., Park, J.-U., Song, M.H.: Highly efficient flexible optoelectronic devices using metal nanowire-conducting polymer composite transparent electrode. Electron. Mater. Lett. 11, 906–914 (2015)

    Article  CAS  Google Scholar 

  4. Hu, H., Wang, S., Wang, S., Liu, G., Cao, T., Long, Y.: Aligned silver nanowires enabled highly stretchable and transparent electrodes with unusual conductive property. Adv. Funct. Mater. 29, 1902922 (2019)

    Article  Google Scholar 

  5. Seol, Y.G., Trung, T.Q., Yoon, O.-J., Sohn, I.-Y., Lee, N.-E.: Nanocomposites of reduced graphene oxide nanosheets and conducting polymer for stretchable transparent conducting electrodes. J. Mater. Chem. 22, 23759–23766 (2012)

    Article  CAS  Google Scholar 

  6. Ye, G., Song, Z., Yu, T., Tan, Q., Zhang, Y., Chen, T., He, C., Jin, L., Liu, N.: Dynamic Ag-N bond enhanced stretchable conductor for transparent and self-healing electronic skin. ACS Appl. Mater. Interfaces 12, 1486–1494 (2020)

    Article  CAS  Google Scholar 

  7. Kim, D.C., Shim, H.J., Lee, W., Koo, J.H., Kim, D.H.: Material-based approaches for the fabrication of stretchable electronics. Adv. Mater. 32, 1902743 (2019)

    Article  Google Scholar 

  8. Choi, S.B., Oh, M.S., Han, C.J., Kang, J.-W., Lee, C.-R., Lee, J., Kim, J.-W.: Conformable, thin, and dry electrode for electrocardiography using composite of silver nanowires and polyvinyl butyral. Electron. Mater. Lett. 15, 267–277 (2019)

    Article  CAS  Google Scholar 

  9. Matsuhisa, N., Chen, X., Bao, Z., Someya, T.: Materials and structural designs of stretchable conductors. Chem. Soc. Rev. 48, 2946–2966 (2019)

    Article  CAS  Google Scholar 

  10. Feng, P., Ji, H., Zhang, L., Luo, X., Leng, X., He, P., Feng, H., Zhang, J., Ma, X., Zhao, W.: Highly stretchable patternable conductive circuits and wearable strain sensors based on polydimethylsiloxane and silver nanoparticles. Nanotechnology 30, 185501 (2019)

    Article  CAS  Google Scholar 

  11. Li, T., Huang, Z.Y., Xi, Z.C., Lacour, S.P., Wagner, S., Suo, Z.: Delocalizing strain in a thin metal film on a polymer substrate. Mech. Mater. 37, 261–273 (2005)

    Article  Google Scholar 

  12. Xiang, Y., Li, T., Suo, Z., Vlassak, J.J.: High ductility of a metal film adherent on a polymer substrate. Appl. Phys. Lett. 87, 161910 (2005)

    Article  Google Scholar 

  13. Lee, D.-J., Lee, J.-S., Kim, T.-W., Lee, S.-Y., Park, Y.-B., Joo, Y.-C., Kim, B.-J.: Effect of the thermal annealing on the stretchability and fatigue failure of the copper film on the polymer substrate. J. Electron. Mater. 48, 4582–4588 (2019)

    Article  CAS  Google Scholar 

  14. Lu, N., Wang, X., Suo, Z., Vlassak, J.: Metal films on polymer substrates stretched beyond 50%. Appl. Phys. Lett. 91, 221909 (2007)

    Article  Google Scholar 

  15. Lee, S.Y., Park, K.R., Kang, S.G., Lee, J.H., Jeon, E.C., Shim, C.H., Ahn, J.P., Kim, D.I., Han, H.N., Joo, Y.C., Kim, C., Choi, I.S.: Selective crack suppression during deformation in metal films on polymer substrates using electron beam irradiation. Nat. Commun. 10, 4454 (2019)

    Article  Google Scholar 

  16. Vásquez Quintero, A., Verplancke, R., De Smet, H., Vanfleteren, J.: Stretchable electronic platform for soft and smart contact lens applications. Adv. Mater. Technol. 2, 170073 (2017)

    Article  Google Scholar 

  17. Wang, S., Xiao, P., Liang, Y., Zhang, J., Huang, Y., Wu, S., Kuo, S.-W., Chen, T.: Network cracks-based wearable strain sensors for subtle and large strain detection of human motions. J. Mater. Chem. C 6, 5140–5147 (2018)

    Article  CAS  Google Scholar 

  18. Lee, S.J., Kim, J.-W., Park, J.H., Porte, Y., Kim, J.-H., Park, J.-W., Kim, S., Myoung, J.-M.: SWCNT–Ag nanowire composite for transparent stretchable film heater with enhanced electrical stability. J. Mater. Sci. 53, 12284–12294 (2018)

    Article  CAS  Google Scholar 

  19. Peng, S., Wu, S., Zhang, F., Wang, C.H.: Stretchable nanocomposite conductors enabled by 3D segregated dual-filler network. Adv. Mater. Technol. 4, 1900060 (2019)

    Article  CAS  Google Scholar 

  20. Hyun, S.H., Park, S.-H., Choa, S.-H., Nam, H.J., Ahn, H.: Silver and epoxy binder-based printed electrodes and the effect of silver nanoparticles on stretchability. J. Mater. Sci. Mater. Electron. 30, 17591–17600 (2019)

    Article  CAS  Google Scholar 

  21. Guo, C.F., Chen, Y., Tang, L., Wang, F., Ren, Z.: Enhancing the scratch resistance by introducing chemical bonding in highly stretchable and transparent electrodes. Nano Lett. 16, 594–600 (2016)

    Article  CAS  Google Scholar 

  22. Coskun, S., Selen Ates, E., Unalan, H.E.: Optimization of silver nanowire networks for polymer light emitting diode electrodes. Nanotechnology 24, 125202 (2013)

    Article  Google Scholar 

  23. Lagrange, M., Langley, D.P., Giusti, G., Jimenez, C., Brechet, Y., Bellet, D.: Optimization of silver nanowire-based transparent electrodes: effects of density, size and thermal annealing. Nanoscale 7, 17410–17423 (2015)

    Article  CAS  Google Scholar 

  24. Garnett, E.C., Cai, W., Cha, J.J., Mahmood, F., Connor, S.T., Greyson Christoforo, M., Cui, Y., McGehee, M.D., Brongersma, M.L.: Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11, 241–249 (2012)

    Article  CAS  Google Scholar 

  25. Han, S., Hong, S., Ham, J., Yeo, J., Lee, J., Kang, B., Lee, P., Kwon, J., Lee, S.S., Yang, M.Y., Ko, S.H.: Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv. Mater. 26, 5808–5814 (2014)

    Article  CAS  Google Scholar 

  26. Spechler, J.A., Arnold, C.B.: Direct-write pulsed laser processed silver nanowire networks for transparent conducting electrodes. Appl. Phys. A 108, 25–28 (2012)

    Article  CAS  Google Scholar 

  27. Ha, J., Lee, B.J., Hwang, D.J., Kim, D.: Femtosecond laser nanowelding of silver nanowires for transparent conductive electrodes. RSC Adv. 89, 86232–86239 (2016)

    Article  Google Scholar 

  28. Bari, B., Lee, J., Jang, T., Won, P., Ko, S.H., Alamgir, K., Arshad, M., Guo, L.J.: Simple hydrothermal synthesis of very-long and thin silver nanowires and their application in high quality transparent electrodes. J. Mater. Chem. A 4, 11365–11371 (2016)

    Article  CAS  Google Scholar 

  29. Narayanan, S., Cheng, G., Zeng, Z., Zhu, Y., Zhu, T.: Strain hardening and size effect in five-fold twinned Ag nanowires. Nano Lett. 15, 4037–4044 (2015)

    Article  CAS  Google Scholar 

  30. Zhu, Y., Qin, Q., Xu, F., Fan, F., Ding, Y., Zhang, T., Wiley, B.J., Wang, Z.L.: Size effects on elasticity, yielding, and fracture of silver nanowires: in situexperiments. Phys. Rev. B 85, 045443 (2012)

    Article  Google Scholar 

  31. Kim, D., Kim, S.H., Kim, J.H., Lee, J.C., Ahn, J.P., Kim, S.W.: Failure criterion of silver nanowire electrodes on a polymer substrate for highly flexible devices. Sci. Rep. 7, 45903 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the MOTIE (Ministry of Trade, Industry & Energy (10051601)) and KDRC (Korea Display Research Consortium) support program for the development of future devices technology for display industry. AFM analysis was supported by the Research Institute of Advanced Materials (RIAM) in Seoul National University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to So-Yeon Lee or Young-Chang Joo.

Ethics declarations

Conflict of interest

All author declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 693 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JC., Lee, JS., Won, P. et al. Operation Range-Optimized Silver Nanowire Through Junction Treatment. Electron. Mater. Lett. 16, 491–497 (2020). https://doi.org/10.1007/s13391-020-00231-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00231-2

Keywords

Navigation