Skip to main content
Log in

Deterministic characteristics of spontaneous activity detected by multi-fractal analysis in a spiking neural network with long-tailed distributions of synaptic weights

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Cortical neural networks maintain autonomous electrical activity called spontaneous activity that represents the brain’s dynamic internal state even in the absence of sensory stimuli. The spatio-temporal complexity of spontaneous activity is strongly related to perceptual, learning, and cognitive brain functions; multi-fractal analysis can be utilized to evaluate the complexity of spontaneous activity. Recent studies have shown that the deterministic dynamic behavior of spontaneous activity especially reflects the topological neural network characteristics and changes of neural network structures. However, it remains unclear whether multi-fractal analysis, recently widely utilized for neural activity, is effective for detecting the complexity of the deterministic dynamic process. To verify this point, we focused on the log-normal distribution of excitatory postsynaptic potentials (EPSPs) to evaluate the multi-fractality of spontaneous activity in a spiking neural network with a log-normal distribution of EPSPs. We found that the spiking activities exhibited multi-fractal characteristics. Moreover, to investigate the presence of a deterministic process in the spiking activity, we conducted a surrogate data analysis against the time-series of spiking activity. The results showed that the spontaneous spiking activity included the deterministic dynamic behavior. Overall, the combination of multi-fractal analysis and surrogate data analysis can detect deterministic complex neural activity. The multi-fractal analysis of neural activity used in this study could be widely utilized for brain modeling and evaluation methods for signals obtained by neuroimaging modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adeli H, Ghosh-Dastidar S, Dadmehr N (2005a) Alzheimer’s disease and models of computation: imaging, classification, and neural models. J Alzheimers Dis 7(3):187–199

    PubMed  Google Scholar 

  • Adeli H, Ghosh-Dastidar S, Dadmehr N (2005b) Alzheimer’s disease: models of computation and analysis of EEGs. Clin EEG Neurosci 36(3):131–140

    PubMed  Google Scholar 

  • Adeli H, Ghosh-Dastidar S, Dadmehr N (2008) A spatio-temporal wavelet-chaos methodology for eeg-based diagnosis of Alzheimer’s disease. Neurosci Lett 444(2):190–194

    CAS  PubMed  Google Scholar 

  • Bellec G, Salaj D, Subramoney A, Legenstein R, Maass W (2018) Long short-term memory and learning-to-learn in networks of spiking neurons. In: Advances in neural information processing systems, pp 787–797

  • Bonzon P (2017) Towards neuro-inspired symbolic models of cognition: linking neural dynamics to behaviors through asynchronous communications. Cogn Neurodyn 11(4):327–353

    PubMed  PubMed Central  Google Scholar 

  • Brookes MJ, Woolrich M, Luckhoo H, Price D, Hale JR, Stephenson MC, Barnes GR, Smith SM, Morris PG (2011) Investigating the electrophysiological basis of resting state networks using magnetoencephalography. Proc Nat Acad Sci 108(40):16783–16788

    CAS  PubMed  Google Scholar 

  • Buzsáki G, Mizuseki K (2014) The log-dynamic brain: how skewed distributions affect network operations. Nat Rev Neurosci 15(4):264–278

    PubMed  PubMed Central  Google Scholar 

  • da Silva FL (2013) EEG and MEG: relevance to neuroscience. Neuron 80(5):1112–1128

    Google Scholar 

  • Destexhe A (2009) Self-sustained asynchronous irregular states and up–down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. J Comput Neurosci 27(3):493

    PubMed  Google Scholar 

  • Easwaramoorthy D, Uthayakumar R (2010) Analysis of biomedical EEG signals using wavelet transforms and multifractal analysis. In: 2010 international conference on communication control and computing technologies, IEEE, pp 544–549

  • Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700

    CAS  PubMed  Google Scholar 

  • Garrett DD, Kovacevic N, McIntosh AR, Grady CL (2011) The importance of being variable. J Neurosci 31(12):4496–4503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gautama T, Mandic DP, Van Hulle MM (2003) Indications of nonlinear structures in brain electrical activity. Phys Rev E 67(4):046204

    Google Scholar 

  • Goodman DF, Stimberg M, Yger P, Brette R (2014) Brian 2: neural simulations on a variety of computational hardware. BMC Neurosci 15(1):P199

    PubMed Central  Google Scholar 

  • Guo D, Li C (2010) Self-sustained irregular activity in 2-D small-world networks of excitatory and inhibitory neurons. IEEE Trans Neural Netw 21(6):895–905

    CAS  PubMed  Google Scholar 

  • Hahn G, Ponce-Alvarez A, Monier C, Benvenuti G, Kumar A, Chavane F, Deco G, Frégnac Y (2017) Spontaneous cortical activity is transiently poised close to criticality. PLoS Comput Biol 13(5):e1005543

    PubMed  PubMed Central  Google Scholar 

  • Hasegawa C, Takahashi T, Yoshimura Y, Ikeda T, Saito DN, Kumazaki H, Minabe Y, Kikuchi M (2018) Developmental trajectory of infant brain signal variability: a longitudinal pilot study. Front Neurosci 12:566

    PubMed  PubMed Central  Google Scholar 

  • Jaffard S, Lashermes B, Abry P (2006) Wavelet leaders in multifractal analysis. In: Wavelet analysis and applications, Springer, pp 201–246

  • Kanamaru T (2017) Chaotic pattern alternations can reproduce properties of dominance durations in multistable perception. Neural Comput 29(6):1696–1720

    PubMed  Google Scholar 

  • Kantz H, Schreiber T (2004) Nonlinear time series analysis, vol 7. Cambridge University Press, Cambridge

    Google Scholar 

  • Kheradpisheh SR, Ganjtabesh M, Thorpe SJ, Masquelier T (2018) STDP-based spiking deep convolutional neural networks for object recognition. Neural Netw 99:56–67

    PubMed  Google Scholar 

  • Kim SY, Lim W (2017) Dynamical responses to external stimuli for both cases of excitatory and inhibitory synchronization in a complex neuronal network. Cogn Neurodyn 11(5):395–413

    PubMed  PubMed Central  Google Scholar 

  • Kim SY, Lim W (2018) Effect of spike-timing-dependent plasticity on stochastic burst synchronization in a scale-free neuronal network. Cogn Neurodyn 12(3):315–342

    PubMed  PubMed Central  Google Scholar 

  • Klimesch W, Sauseng P, Hanslmayr S, Gruber W, Freunberger R (2007) Event-related phase reorganization may explain evoked neural dynamics. Neurosci Biobehav Rev 31(7):1003–1016

    PubMed  Google Scholar 

  • Kulkarni SR, Rajendran B (2018) Spiking neural networks for handwritten digit recognition—supervised learning and network optimization. Neural Netw 103:118–127

    PubMed  Google Scholar 

  • La Rocca D, Zilber N, Abry P, van Wassenhove V, Ciuciu P (2018) Self-similarity and multifractality in human brain activity: a wavelet-based analysis of scale-free brain dynamics. J Neurosci Methods 309:175–187

    PubMed  Google Scholar 

  • Lee JH, Delbruck T, Pfeiffer M (2016) Training deep spiking neural networks using backpropagation. Front Neurosci 10:508

    PubMed  PubMed Central  Google Scholar 

  • Lin X, Wang X, Hao Z (2017) Supervised learning in multilayer spiking neural networks with inner products of spike trains. Neurocomputing 237:59–70

    Google Scholar 

  • Lin Z, Ma D, Meng J, Chen L (2018) Relative ordering learning in spiking neural network for pattern recognition. Neurocomputing 275:94–106

    Google Scholar 

  • Maksimenko VA, Pavlov A, Runnova AE, Nedaivozov V, Grubov V, Koronovslii A, Pchelintseva SV, Pitsik E, Pisarchik AN, Hramov AE (2018) Nonlinear analysis of brain activity, associated with motor action and motor imaginary in untrained subjects. Nonlinear Dyn 91(4):2803–2817

    Google Scholar 

  • McCormick DA (1999) Spontaneous activity: signal or noise? Science 285(5427):541–543

    CAS  PubMed  Google Scholar 

  • Mizuno T, Takahashi T, Cho RY, Kikuchi M, Murata T, Takahashi K, Wada Y (2010) Assessment of EEG dynamical complexity in Alzheimer’s disease using multiscale entropy. Clin Neurophysiol 121(9):1438–1446

    PubMed  PubMed Central  Google Scholar 

  • Mozafari M, Kheradpisheh SR, Masquelier T, Nowzari-Dalini A, Ganjtabesh M (2018) First-spike-based visual categorization using reward-modulated STDP. IEEE Trans Neural Netw Learn Syst 29:6178–6190

    PubMed  Google Scholar 

  • Nobukawa S, Aiura H, Yoshida H, Nishimura H, Yamanishi T (2018a) Temporal fluctuation in spontaneous activity of a spiking neural network with long-tailed synaptic weights. In: Proceedings of 2018 international symposium on nonlinear theory and its applications (NOLTA 2018), IEICE, pp 375–378

  • Nobukawa S, Nishimura H, Yamanishi T (2018b) Skewed and long-tailed distributions of spiking activity in coupled network modules with log-normal synaptic weight distribution. In: International conference on neural information processing, Springer, pp 535–544

  • Nobukawa S, Kikuchi M, Takahashi T (2019a) Changes in functional connectivity dynamics with aging: a dynamical phase synchronization approach. NeuroImage 188:357–368

    PubMed  Google Scholar 

  • Nobukawa S, Nishimura H, Yamanishi T (2019b) Pattern classification by spiking neural networks combining self-organized and reward-related spike-timing-dependent plasticity. J Artif Intell Soft Comput Res 9(4):283–291

    Google Scholar 

  • Nobukawa S, Nishimura H, Yamanishi T (2019c) Temporal-specific complexity of spiking patterns in spontaneous activity induced by a dual complex network structure. Sci Rep 9(1):1–12

    Google Scholar 

  • Nobukawa S, Yamanishi T, Nishimura H, Wada Y, Kikuchi M, Takahashi T (2019d) Atypical temporal-scale-specific fractal changes in Alzheimer’s disease EEG and their relevance to cognitive decline. Cogn Neurodyn 13(1):1–11

    PubMed  Google Scholar 

  • Nobukawa S, Yamanishi T, Kasakawa S, Nishimura H, Kikuchi M, Takahashi T (2020) Classification methods based on complexity and synchronization of electroencephalography signals in Alzheimer’s disease. Front Psychiatry 11:255

    PubMed  PubMed Central  Google Scholar 

  • Nurujjaman M, Narayanan R, Iyengar AS (2009) Comparative study of nonlinear properties of EEG signals of normal persons and epileptic patients. Nonlinear Biomed Phys 3(1):6

    PubMed  PubMed Central  Google Scholar 

  • Okazaki R, Takahashi T, Ueno K, Takahashi K, Ishitobi M, Kikuchi M, Higashima M, Wada Y (2015) Changes in EEG complexity with electroconvulsive therapy in a patient with autism spectrum disorders: a multiscale entropy approach. Front Hum Neurosci 9:106

    PubMed  PubMed Central  Google Scholar 

  • Oprea L, Pack CC, Khadra A (2020) Machine classification of spatiotemporal patterns: automated parameter search in a rebounding spiking network. Cogn Neurodyn 14:267–280

    PubMed  Google Scholar 

  • Rabinovich MI, Varona P, Selverston AI, Abarbanel HD (2006) Dynamical principles in neuroscience. Rev Mod Phys 78(4):1213

    Google Scholar 

  • Sakata S, Harris KD (2009) Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron 64(3):404–418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samura T, Ikegaya Y, Sato YD (2015) A neural network model of reliably optimized spike transmission. Cogn Neurodyn 9(3):265–277

    PubMed  PubMed Central  Google Scholar 

  • Schreiber T, Schmitz A (1996) Improved surrogate data for nonlinearity tests. Phys Rev Lett 77(4):635

    CAS  PubMed  Google Scholar 

  • Stam CJ (2005) Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol 116(10):2266–2301

    CAS  PubMed  Google Scholar 

  • Takahashi T (2013) Complexity of spontaneous brain activity in mental disorders. Prog Neuropsychopharmacol Biol Psychiatry 45:258–266

    PubMed  Google Scholar 

  • Takahashi T, Cho RY, Mizuno T, Kikuchi M, Murata T, Takahashi K, Wada Y (2010) Antipsychotics reverse abnormal EEG complexity in drug-naive schizophrenia: a multiscale entropy analysis. Neuroimage 51(1):173–182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi T, Yoshimura Y, Hiraishi H, Hasegawa C, Munesue T, Higashida H, Minabe Y, Kikuchi M (2016) Enhanced brain signal variability in children with autism spectrum disorder during early childhood. Hum Brain Mapp 37(3):1038–1050

    PubMed  Google Scholar 

  • Tavanaei A, Kirby Z, Maida AS (2018a) Training spiking ConvNets by STDP and gradient descent. In: 2018 international joint conference on neural networks (IJCNN), IEEE, pp 1–8

  • Tavanaei A, Masquelier T, Maida A (2018b) Representation learning using event-based STDP. Neural Netw 105:294–303

    PubMed  Google Scholar 

  • Teplan M et al (2002) Fundamentals of EEG measurement. Meas Sci Rev 2(2):1–11

    Google Scholar 

  • Teramae J, Tsubo Y, Fukai T (2012) Optimal spike-based communication in excitable networks with strong-sparse and weak-dense links. Sci Rep 2:1–6

    Google Scholar 

  • Tetko IV, Villa AE (2001) A pattern grouping algorithm for analysis of spatiotemporal patterns in neuronal spike trains. 2. Application to simultaneous single unit recordings. J Neurosci Methods 105(1):15–24

    CAS  PubMed  Google Scholar 

  • Theiler J, Eubank S, Longtin A, Galdrikian B, Doyne Farmer J (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58:77–94

    Google Scholar 

  • Uthayakumar R, Easwaramoorthy D (2013) Epileptic seizure detection in EEG signals using multifractal analysis and wavelet transform. Fractals 21(02):1350011

    Google Scholar 

  • Van de Ville D, Britz J, Michel CM (2010) EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc Nat Acad Sci 107(42):18179–18184

    PubMed  Google Scholar 

  • Vogels TP, Abbott LF (2005) Signal propagation and logic gating in networks of integrate-and-fire neurons. J Neurosci 25(46):10786–10795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wendt H, Abry P (2007) Multifractality tests using bootstrapped wavelet leaders. IEEE Trans Signal Process 55(10):4811–4820

    Google Scholar 

  • Wu Y, Deng L, Li G, Zhu J, Shi L (2018) Spatio-temporal backpropagation for training high-performance spiking neural networks. Front Neurosci 12:331

    PubMed  PubMed Central  Google Scholar 

  • Yang AC, Tsai SJ (2013) Is mental illness complex? From behavior to brain. Prog Neuropsychopharmacol Biol Psychiatry 45:253–257

    PubMed  Google Scholar 

  • Zhang J, Cheng W, Liu Z, Zhang K, Lei X, Yao Y, Becker B, Liu Y, Kendrick KM, Lu G et al (2016) Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders. Brain 139(8):2307–2321

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI for Early-Career Scientists Grant Number 18K18124.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sou Nobukawa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nobukawa, S., Wagatsuma, N. & Nishimura, H. Deterministic characteristics of spontaneous activity detected by multi-fractal analysis in a spiking neural network with long-tailed distributions of synaptic weights. Cogn Neurodyn 14, 829–836 (2020). https://doi.org/10.1007/s11571-020-09605-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-020-09605-6

Keywords

Navigation