Skip to main content
Log in

Investigating the Nucleation Effect of DMDBS on Syndiotactic Polypropylene from the Perspective of Chain Conformation

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The mechanism of nucleating agents (NAs) accelerating the crystallization of semi-crystalline polymers has received continuous attention due to the extreme importance in academic research and industry application. In this work, the nucleation effect and probable mechanism of 1,3:2,4-bis(3,4-dimethylbenzylidene)sorbitol (DMDBS) on promoting the crystallization of syndiotactic polypropylene (sPP) was systematically investigated. Our results showed that DMDBS could significantly accelerate the crystallization process and did not change the crystalline form of sPP. The in situ infrared spectra recorded in the crystallization process showed that in pristine sPP the tttt conformers decreased and the ttgg conformers increased subsequently. In sPP/DMDBS system, DMDBS could promote the increase of ttgg conformers rather than the decrease of tttt conformers. The further analysis by 2D-IR spectra revealed that ttgg conformers increased prior to the decrease of tttt conformers in the sPP/DMDBS system comparing with pristine sPP. Considering that ttgg conformers were basic elements of helical conformation of Form I crystal for sPP, we proposed a probable nucleation mechanism of DMDBS for sPP:DMDBS could stabilize the ttgg conformers which induced these ttgg conformers to pre-orientate and aggregate into helical conformation sequences as initial nuclei quickly and early to promote the sPP crystallization. Our work provides some new insights into the nucleation mechanism of NAs for sPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Menczel, J.; Varga, J. Influence of nucleating-agents on crystallization of polypropylene. 1. Talc as a nucleating-agent. J. Therm. Anal.1983, 28, 161–174.

    CAS  Google Scholar 

  2. Horvath, Z.; Gyarmati, B.; Menyhard, A.; Doshev, P.; Gahleitner, M.; Varga, J.; Pukanszky, B. The role of solubility and critical temperatures for the efficiency of sorbitol clarifiers in polypropylene. RSC Adv.2014, 4, 19737–19745.

    CAS  Google Scholar 

  3. Binsbergen, F. L. Heterogeneous nucleation in the crystallization of polyolefins: Part 1. Chemical and physical nature of nucleating agents. Polymer1970, 11, 253–267.

    CAS  Google Scholar 

  4. Jang, G. S.; Cho, W. J.; Ha, C. S. Crystallization behavior of polypropylene with or without sodium benzoate as a nucleating agent. J. Polym. Sci., Part B: Polym. Phys.2001, 39, 1001–1016.

    CAS  Google Scholar 

  5. Hoffmann, K.; Huber, G.; Mäder, D. Nucleating and clarifying agents for polyolefins. Macromol. Symp.2001, 176, 83–92.

    CAS  Google Scholar 

  6. Kristiansen, M.; Werner, M.; Tervoort, T.; Smith, P.; Blomenhofer, M.; Schmidt, H. W. The binary system isotactic polypropylene/bis(3,4-dimethylbenzylidene)sorbitol: phase behavior, nucleation, and optical properties. Macromolecules2003, 36, 5150–5156.

    CAS  Google Scholar 

  7. Zhang, Q. X.; Yu, Z. Z.; Xie, X. L.; Mai, Y. W. Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier. Polymer2004, 45, 5985–5994.

    CAS  Google Scholar 

  8. Xie, K.; Shen, J.; Ye, L.; Liu, Z.; Li, Y. Increased gt conformer contents of PLLA molecular chains induced by Li-TFSI in melt: another route to promote PLLA crystallization. Macromolecules2019, 52, 7065–7072.

    CAS  Google Scholar 

  9. Mathieu, C.; Thierry, A.; Wittmann, J. C.; Lotz, B. “Multiple” nucleation of the (010) contact face of isotactic polypropylene, a phase. Polymer2000, 41, 7241–7253.

    CAS  Google Scholar 

  10. Wittmann, J. C.; Lotz, B. Epitaxial crystallization of polymers on organic and polymeric substrates. Prog. Polym. Sci.1990, 15, 909–948.

    CAS  Google Scholar 

  11. Binsbergen, F. L. Heterogeneous nucleation in the crystallization of polyolefins. III. Theory and mechansim. J. Polym. Sci., Part B: Polym. Phys.1973, 11, 117–135.

    CAS  Google Scholar 

  12. Blomenhofer, M.; Ganzleben, S.; Hanft, D.; Schmidt, H. W.; Kristiansen, M.; Smith, P.; Stoll, K.; Mäder, D.; Hoffmann, K. “Designer” nucleating agents for polypropylene. Macromolecules2005, 38, 3688–3695.

    CAS  Google Scholar 

  13. Khanna, Y. P. Rheological mechanism and overview of nucleated crystallization kinetics. Macromolecules1993, 26, 3639–3643.

    CAS  Google Scholar 

  14. Tang, X.; Chen, W.; Li, L. The tough journey of polymer crystallization: battling with chain flexibility and connectivity. Macromolecules2019, 52, 3575–3591.

    CAS  Google Scholar 

  15. Zhu, X.; Yan, D.; Fang, Y. In situ FTIR spectroscopic study of the conformational change of isotactic polypropylene during the crystallization process. J. Phys. Chem. B2001, 105, 12461–12463.

    CAS  Google Scholar 

  16. Zhu, X.; Yan, D.; Yao, H.; Zhu, P. In situ FTIR spectroscopic study of the regularity bands and partial-order melts of isotactic poly (propylene). Macromol. Rapid Commun.2000, 21, 354–357.

    CAS  Google Scholar 

  17. Cong, Y.; Hong, Z.; Qi, Z.; Zhou, W.; Li, H.; Liu, H.; Chen, W.; Wang, X.; Li, L. Conformational ordering in growing spherulites of isotactic polypropylene. Macromolecules2010, 43, 9859–9864.

    CAS  Google Scholar 

  18. Cong, Y.; Hong, Z.; Zhou, W.; Chen, W.; Su, F.; Li, H.; Li, X.; Yang, K.; Yu, X.; Qi, Z.; Li, L. Conformational ordering on the growth front of isotactic polypropylene spherulite. Macromolecules2012, 45, 8674–8680.

    CAS  Google Scholar 

  19. Cui, K.; Ma, Z.; Tian, N.; Su, F.; Liu, D.; Li, L. Multiscale and multistep ordering of flow-induced nucleation of polymers. Chem. Rev.2018, 118, 1840–1886.

    CAS  PubMed  Google Scholar 

  20. Su, F.; Ji, Y.; Meng, L.; Wang, Z.; Qi, Z.; Chang, J.; Ju, J.; Li, L. Coupling of multiscale orderings during flow-induced crystallization of isotactic polypropylene. Macromolecules2017, 50, 1991–1997.

    CAS  Google Scholar 

  21. Smith, T. L.; Masilamani, D.; Bui, L. K.; Khanna, Y. P.; Bray, R. G.; Hammond, W. B.; Curran, S.; Belles, J. J.; Bindercastelli, S. The mechanism of action of sugar acetals as nucleating-agents for polypropylene. Macromolecules1994, 27, 3147–3155.

    CAS  Google Scholar 

  22. Nagarajan, K.; Myerson, A. S. Molecular dynamics of nucleation and crystallization of polymers. Cryst. Growth Des.2001, 1, 131–142.

    CAS  Google Scholar 

  23. De Rosa, C.; Auriemma, F.; Ruiz de Ballesteros, O.; Resconi, L.; Fait, A.; Ciaccia, E.; Camurati, I. Synthesis and characterization of high-molecular-weight syndiotactic amorphous polypropylene. J. Am. Chem. Soc.2003, 125, 10913–10920.

    CAS  PubMed  Google Scholar 

  24. De Rosa, C.; Auriemma, F.; de Ballesteros, O. R. A microscopic insight into the deformation behavior of semicrystalline polymers: the role of phase transitions. Phys. Rev. Lett.2006, 96, 167801–167804.

    PubMed  Google Scholar 

  25. Ahmad, N.; Di Girolamo, R.; Auriemma, F.; De Rosa, C.; Grizzutit, N. Relations between stereoregularity and melt viscoelasticity of syndiotactic polypropylene. Macromolecules2013, 46, 7940–7946.

    CAS  Google Scholar 

  26. Supaphol, P. Crystallization and melting behavior in syndiotactic polypropylene: origin of multiple melting phenomenon. J. Appl. olym. Sci.2001, 82, 1083–1097.

    CAS  Google Scholar 

  27. Supaphol, P.; Lin, J. S. Crystalline memory effect in isothermal crystallization of syndiotactic polypropylenes: effect of fusion temperature on crystallization and melting behavior. Polymer2001, 42, 9617–9626.

    CAS  Google Scholar 

  28. Supaphol, P.; Charoenphol, P.; Junkasem, J. Effect of nucleating agents on crystallization and melting behavior and mechanical properties of nucleated syndiotactic poly(propylene). Macromol. Mater. Eng.2004, 289, 818–827.

    CAS  Google Scholar 

  29. Charoenphol, P.; Supaphol, P. Nonisothermal melt-crystallization kinetics of syndiotactic polypropylene compounded with various nucleating agents. J. Appl. Polym. Sci.2005, 95, 245–253.

    CAS  Google Scholar 

  30. Noda, I.; Dowrey, A. E.; Marcott, C.; Story, G. M.; Ozaki, Y. Generalized two-dimensional correlation spectroscopy. Appl. Spectrosc.2000, 54, 236a–248a.

    CAS  Google Scholar 

  31. Noda, I. Determination of two-dimensional correlation spectra using the Hilbert transform. Appl. Spectrosc.2000, 54, 994–999.

    CAS  Google Scholar 

  32. Busico, V.; Cipullo, R.; Monaco, G.; Vacatello, M.; Segre, A. L. Full assignment of the 13C-NMR spectra of regioregular polypropylenes: methyl and methylene region. Macromolecules1997, 30, 6251–6263.

    CAS  Google Scholar 

  33. Busico, V.; Cipullo, R.; Monaco, G.; Vacatello, M.; Bella, J.; Segre, A. L. Full assignment of the 13C NMR spectra of regioregular polypropylenes: methine region. Macromolecules1998, 31, 8713–8719.

    CAS  Google Scholar 

  34. Avrami, M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J. Chem. Phys.1940, 8, 212–224.

    CAS  Google Scholar 

  35. Avrami, M. Granulation, phase change, and microstructure-kinetics of phase change. III. J. Chem. Phys.1941, 9, 177–184.

    CAS  Google Scholar 

  36. Wilder, E. A.; Spontak, R. J.; Hall, C. K. The molecular structure and intermolecular interactions of 1,3:2,4-dibenzylidene-D-sorbitol. Mol. Phys.2003, 101, 3017–3027.

    CAS  Google Scholar 

  37. Shepard, T. A.; Delsorbo, C. R.; Louth, R. M.; Walborn, J. L.; Norman, D. A.; Harvey, N. G.; Spontak, R. J. Self-organization and polyolefin nucleation efficacy of 1,3:2,4-di-p-methylbenzylidene sorbitol. J. Polym. Sci., Part B: Polym. Phys.1997, 35, 2617–2628.

    CAS  Google Scholar 

  38. Jin, Y.; Hiltner, A.; Baer, E. Effect of a sorbitol nucleating agent on fractionated crystallization of polypropylene droplets. J. Polym. Sci., Part B: Polym. Phys.2007, 45, 1788–1797.

    CAS  Google Scholar 

  39. Zhao, Y.; Vaughan, A. S.; Sutton, S. J.; Swingler, S. G. On the crystallization, morphology and physical properties of a clarified propylene/ethylene copolymer. Polymer2001, 42, 6587–6597.

    CAS  Google Scholar 

  40. Zheng, K.; Liu, R.; Chang, H.; Shen, D.; Huang, Y. In situ FTIR spectroscopic study of the conformational change of syndiotactic polypropylene during the isothermal crystallization. Polymer2009, 50, 5782–5786.

    CAS  Google Scholar 

  41. Zheng, C.; Zhang, X.; Dong, X.; Zhao, Y.; Wang, Z.; Zhu, S.; Xu, D.; Wang, D. Variations of regular conformation structures in melt of syndiotactic polypropylene. Polymer2006, 47, 7813–7820.

    CAS  Google Scholar 

  42. Zheng, K.; Liu, R. G.; Huang, Y. A two-dimensional IR correlation spectroscopic study of the conformational changes in syndiotactic polypropylene during crystallization. Polym. J.2010, 42, 81–85.

    CAS  Google Scholar 

  43. Gatos, K. G.; Kandilioti, G.; Galiotis, C.; Gregoriou, V. G. Mechanically and thermally induced chain conformational transformations between helical form I and trans-planar form III in syndiotactic polypropylene using FT-IR and Raman spectroscopic techniques. Polymer2004, 45, 4453–4464.

    CAS  Google Scholar 

  44. Sevegney, M. S.; Kannan, R. M.; Siedle, A. R.; Percha, P. A. FTIR spectroscopic investigation of thermal effects in semi-syndiotactic polypropylene. J. Polym. Sci., Part B: Polym. Phys.2005, 43, 439–461.

    CAS  Google Scholar 

  45. Nakaoki, T.; Yamanaka, T.; Ohira, Y.; Horii, F. Dynamic FT-IR analysis of the crystallization to the planar zigzag form for syndiotactic polypropylene. Macromolecules2000, 33, 2718–2721.

    CAS  Google Scholar 

  46. Sevegney, M. S.; Parthasarthy, G.; Kannan, R. M.; Thurman, D. W.; Fernandez-Ballester, L. Deformation-induced morphology changes and orientation behavior in syndiotactic polypropylene. Macromolecules2003, 36, 6472–6483.

    CAS  Google Scholar 

  47. Noda, I. Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy. Appl. Spectrosc.1993, 47, 1329–1336.

    CAS  Google Scholar 

  48. Noda, I. Recent advancement in the field of two-dimensional correlation spectroscopy. J. Mol. Struct.2008, 883, 2–26.

    Google Scholar 

  49. Sun, B.; Lin, Y.; Wu, P.; Siesler, H. A FTIR and 2D-IR spectroscopic study on the microdynamics phase separation mechanism of the poly(N-isopropylacrylamide) aqueous solution. Macromolecules2008, 41, 1512–1520.

    CAS  Google Scholar 

  50. Zhang, J.; Duan, Y.; Shen, D.; Yan, S.; Noda, I.; Ozaki, Y. Structure changes during the induction period of cold crystallization of isotactic polystyrene investigated by infrared and two-dimensional infrared correlation spectroscopy. Macromolecules2004, 37, 3292–3298.

    CAS  Google Scholar 

  51. Hoffman, J. D.; Miller, R. L. Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer1997, 38, 3151–3212.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51973037 and 51773040) and PetroChina Company Limited, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Chun Feng.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XX., Yi, JJ., Wang, L. et al. Investigating the Nucleation Effect of DMDBS on Syndiotactic Polypropylene from the Perspective of Chain Conformation. Chin J Polym Sci 38, 1355–1364 (2020). https://doi.org/10.1007/s10118-020-2447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2447-1

Keywords

Navigation